Kollmorgen Electric Cylinder Catalog

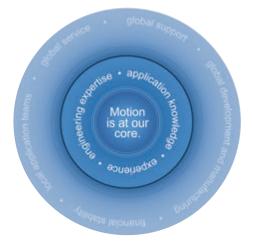
Because Motion Matters™

Kollmorgen. Every solution comes from a real understanding of the challenges facing machine designers and users.

The ever-escalating demands of the marketplace mean increased pressure on machine designers and users at every turn. Time constraints. Demands for better performance. Having to think about the next-generation machine even before the current one is built. While expectations are enormous, budgets are not. Kollmorgen's innovative motion solutions and broad range of quality products help engineers not only overcome these challenges but also build truly differentiated machines.

Because motion matters, it's our focus. Motion can distinctly differentiate a machine and deliver a marketplace advantage by improving its performance. This translates to overall increased efficiency on the factory floor. Perfectly deployed machine motion can make your customer's machine more reliable and efficient, enhance accuracy and improve operator safety. Motion also represents endless possibilities for innovation. We've always understood this potential, and thus have kept motion at our core, relentlessly developing products that offer precision control of speed, accuracy and position in machines that rely on complex motion.

KOLLMORGEN ELECTRIC CYLINDER CATALOG


Table of Contents

Electric Cylinders
The Benefit of Electric Cylinder Motors
Electric Cylinder Features
Specificatio Overview
Electric Cylinder Drive Comparison
Comparison of Linear Actuator Systems
Electric Cylinder Servo Systems
AKD® Servo Drive
The Benefit of AKD Servo Drive
AKD Servo Drive
AKD Specification
Scalable Programmability
AKM® Servomotor
Benefit of AKM Servomotors
AKM Servomotor Features
Electric Cylinder Servosystem Selection Guide
Electric Cylinder Stepper Systems
P7000 Stepper Drive Controller
Electric Cylinder Stepper Motor Selection Guide
N2 Series General Specification
EC Series General Specification
N2 Series Perfomance Curves
EC1 Series Perfomance Curves
EC2 Series Perfomance Curves
EC3 Series Perfomance Curves
EC4 Series Perfomance Curves
EC5 Series Perfomance Curves
N2 Series Outline Drawings
EC Series Outline Drawings
Electric Cylinder Options
Brake Option
N2 Dual Rod-End Bearing Option
Linear Potentiometer Option
Linear Rod Bearing Option
Protective Boot Option
N2 Environmental Options

KOLLMORGEN

Because Motion Matters™

	Electric Cylinder Accessories	113
	Position Sensors	114
	AKM System Specification	116
	AKM1x, 2x, 42, 52 Performance and Mechanical Data	116
	AKM1x, 2x, 4x, 5x Outline Drawings	118
	AKD Options and Accessories	122
	AKD BASIC Drives	122
	AKD PDMM™ Integrated Servo Drive	124
	Kollmorgen WorkBench	126
	AKD Connector Layout and Functionality	128
	Stepper Motor System Specification	132
	Electric Cylinder Linear Positioning	134
	Electrical Cylinder EC vs. Hydralic & Pneumatic	136
	Linear Sizing Calculations	138
	Linear Motion Terminology	142
	Enviormental Considerations	146
	Intro to Motion Control	147
	Glossary of Motion Control Terminology	148
	Conversion Tables	150
	NEMA Specification	153
	Application Worksheet	154
	Model Nomenclature	157
	MOTIONEERING Application Engine	167

Electric Cylinders

Kollmorgen Electric Cylinders offer a cost effective solution for linear positioning of supported or pivoting loads. They are descendents of hydraulic or pneumatic cylinders with many of the same design features but offer the benefit of pr viding a simpler and cleaner transmission.

When high thrust is required these rod type cylinders have the advantage over other linear components because the thrust is transmitted in-line. They also have the advantage of being isolated from the work area so can retract during other operations.

Flexibility in mounting allows either rigid or pivoting options depending on the requirement of the application. In addition to mounting options a wide variety of servo and stepper motor and drive products are offered as an integrated solution to provide the most cost effective combination of thrust, speed and positioning accuracy for your application.

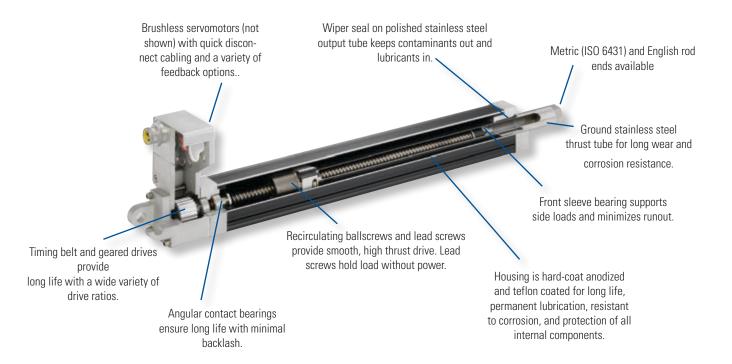
Electric Cylinders Are Preferred When:

- Positioning an externally guided and supported load.
- Moving a load that pivots.
- There is a high concentration of airborne contaminants (rodless actuators are inherently less well protected).
- Replacing a hydraulic or pneumatic cylinder with an electro-mechanical solution.

Kollmorgen offers electric cylinder drive mechanisms designed around either lead screws or ballscrews. Ballscrews, being the more efficient of the t o, utilize ballnuts riding on recirculating ball bearings resulting in higher speeds, loads and cycle rates. However, the more efficient design of ballscr w technology lends it to being backdriven when power is removed if precautions are not taken (e.g., electric brakes or counter loading).

Lead screws are capable of holding the load in position when power is removed, but are less efficient in operation

Kollmorgen's guide system prevents rotation of the ball / lead nut, thus eliminating any torque loading to machine linkage


EC Servo Linear Actuators

- Designed for performance
- Highest quality precision rolled ballscrews and lead screws for quiet, long-life operation
- Brushless Servomotor and Stepper motor options available
- Sealed for IP54 protection. IP65 option available.
- Thrust up to 25000 N [5620 lb]
- Speed up to 1.3 m/s [52.5 in/s]
- Metric design (ISO 6431)
- Available in 5 power ranges EC1, 2, 3, 4 & 5

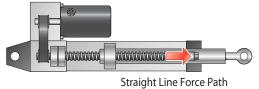
N2 Servo Linear Actuators

- Smallest Package Size
- Time-Proven Design
- Improved Durability Over Previous Designs
- Thrust up to 2670 N [600 lb]
- Speed up to 0.76 m/s [30 in/sec]
- English dimensions (to NFPA standards)
- Brushless Servo with encoder, resolver or SFD feedback
- Stepper motors also available

Typical Construction (EC2 cut-away shown)

Electric Cylinders

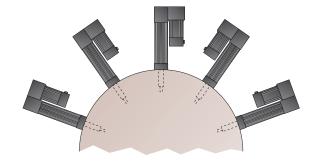
Features

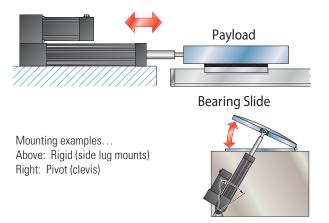


Electric cylinders are direct descendents of hydraulic and pneumatic cylinders. Possessing many of the same unique design characteristics that made hydraulic and pneumatic cylinders popular, electric cylinders benefit from a cleaner and simpler power transmission. Decades of electric cylinder research and development has provided machine designers with a fl xible, simple and unique approach to solving rigid or pivoting linear motion applications.

Electrically Powered, Maintenance Free

Today nearly all machines incorporate panel switches, sensors, lights, displays, PLCs or PCs. Electric power is nearly always available on the machine. Compressed air or hydraulic pumps are not always available or desirable. So why not simplify the machine by using the same control for all the axes of motion? A multi-axis programmable motor control can give you command of both rotary and linear motion. Lastly, the maintenance-free design provides another strong reason to consider electric cylinders in your next application.




Straight-Line Thrust Transmission Use all available Power

When high thrust is required, rod type cylinders have the advantage over other actuation means in that all the thrust transmitting components are in-line. This provides the simplest and most efficient means of transmitting thrust to the load.

Non-Intrusive: Thrust rod can clear out of the way.

A primary advantage of rod-type electric cylinders is the capability to extend into a work area during an operation and then retract to clear the area for subsequent operations. Another benefit of the rod-type design is that the motor and main ody of the electric cylinder can be isolated from the work area. This is very useful when dealing with such hostile environments as vacuum, high temperature, or wash down applications.

Mounting Flexibility

As in most aspects of design, a little creativity goes a long way when attaching a cylinder to a machine. Two general types of mounting styles are available, rigid and pivoting. Rigid mounting options include side-tapped holes, front and rear flanges, side lugs and side angle brac ets. These typically restrict motion to straight-line travel paths. Pivoting mounts such as the clevis or trunnion allow the cylinder to move as a link in a dynamic assembly. There are many applications for this "arc-motion" – conveyor diverter gates, pivoting rollers, lid lifters for chemical chambers, "scissors clamps" and so on.

Specification Overview

Series	Ν	12	EC1	EC229.53 (750)LeadBall4 mm16, 5 mm16 mm16 mm		EC3 39.37 (1000)		EC4	EC5
Std. Maximum Stroke Length [in (mm)]	* 22.5	(571.5)	7.87 (200)					59.06 (1500)	59.06 (1500)
Type of Screw	Lead	Ball	Ball			Lead	Ball	Ball	Ball
Lead	0.2 in, 0.5 in	0.2 in, 0.5 in	3 mm			4 mm	16, 10, 5 mm	25, 10 mm	32, 10 mm
Nom. Lead Screw Diameter	0.625 in	0.625 in	10 mm			20 mm	20 mm	25 mm	32 mm
Backlash [in (mm)]	0.016 (0.40)	0.015 (0.38)	0.015 (0.38)	0.016 (0.40)	0.010 (0.25)	0.016 (0.40)	0.010 (0.25)	0.12 (0.30)	0.12 (0.30)
Dimension Std.	English I	NFPA Std.			Ν	Aetric ISO6431	Std.		
Bore size			30 mm	50 r	nm	63	mm	80 mm	100 mm
Brushless Servomotor	AKM23		AKM1x	AKM23		AKM23, AKM42, AKM52		AKM42, AKM52	AKM42, AKM52
Stepper Motor	T:	22	CTP12	T22,	T31	T22, T31		T31, T32, T41	T31,T32,T41
Max. Thrust [lb (N)]	600 (2670)	150 (667)	810 (3600)		1620 (7200)		2700 (12,000)	5620 (25,000)
Max. Velocity [in/sec (m/s)]	12 (0.3)	30 (0.76)	13 (0.33)	9.2 (0.23)	50 (1.27)	8.0 (0.20)	50 (1.28)	52.5 (1.33)	52.5 (1.33)
Max. Rated Duty Cycle (load, speed dependent) [%]	rcle (load, speed 50 100 100		50	100	50 100		100	100	
Limit Switches			Optional						
Std. Operating Temperature Range [C (F)]	0 to 60 (3	32 to 140)		-30 to 70 (-22 to 158)					
Moisture/ Contaminants	IPb/ Std IPbb Int								

*Note: Requires dual rod-end bearing option for length over 12"

Electric Cylinder Drive Comparison

The following chart will help pinpoint which linear drive mechanism is right for your application. Kollmorgen offers many positioner options, such as brakes, encoders, lubrication ports, preloaded nuts, and precision ground screws, that may help you meet your specification. If these standard options do not meet our requirements, please contact Kollmorgen for information regarding custom solutions.

Considerations	Lead Screw	Ball screw
Noise	Quiet	Noisy
Back Driving	Self locking	Easily backdrives
Backlash	Increases with wear	Constant throughout screw life
Repeatability	+/- 0.001	+/- 0.001
Duty Cycle	Moderate max. 60%	High max. 100%
Mechanical Efficien y	Low Bronze Nut - 40%	High 90%
Life and Mechanical Wear	Shorter life due to high friction	Longer
Shock Loads	Higher	Lower
Smoothness	Smooth operation at lower speeds	Smooth operation at all speeds
Speed	Low	High
Cost	\$\$\$ Moderate	\$\$\$ Moderate

KOLLMORGEN

Comments

Lead Screw: Sliding nut design provides quiet operation. Ball screw: Transmits audible noise as balls recirculate through nut during motion.

Lead Screw: Good for vertical applications. Ball screw: May require brake or holding device when no holding torque is applied to the screw.

Lead Screw: Considered worn-out when backlash exceeds 0.020". Typically 0.006" when shipped from factory. Ball screw: Typically constant at 0.006" (screw/nut only).

Lead Screw: Low duty cycle due to high friction from sliding surface design. **Ball screw:** High screw efficien y and low friction allow high duty cycle.

Lead Screw: Low efficien y sliding friction surfaces. **Ball screw:** High efficien y smooth rolling contact.

Lead Screw: Mechanical wear is function of duty cycle, load and speed. Ball screw: Virtually no mechanical wear when operated within rated load specifications

Lead Screw: Better suited because of larger surface area. Ball screw: Brinelling of steel balls limits shock load capability.

Lead Screw: At extreme low speeds, units have a tendency to stop/start stutter (due to friction). **Ball screw:** Generally smoother than lead screw types through the entire speed range.

Lead Screw: Extreme speeds and accelerations can generate excessive heat and deform the screw.

Ball screw: Can achieve higher speeds than the lead screw due to the efficien y of the ballnut vs. the sliding contact of the solid nut. Speeds in excess of ratings can deform screw.

Comparison of Positioning Systems

Kollmorgen offers a comprehensive range of linear actuator products including electric cylinders, rodless actuators, and precision tables to meet a wide range of application requirements. For actuator products not included in this catalog go to www.kollmorgen.com for information about other Kollmorgen linear positioning products. (Products highlighted are included in this catalog).

	Model	Product Family	General Information
	Electric Cylinders ¹	EC1 EC2 EC3 EC4 EC5 N2	 Highest Force (Thrust) Clean, Hydraulic Replacement Compact Cross Section Extends into Work Area
	Rodless Actuators (screw drive)	R2A R3 R4	 High Force (Thrust) High Repeatability Long Travel Load Carrying Capability
ALL	Rodless Actuators (belt drive)	R2A R3 R4	 Very High Speed Quiet Operation Long Travel Load Carrying Capability
	Precision Tables	DS4 DS6	High Accuracy & RepeatabilityLow Maintenance, Long LifeHigh Moment Loads

Electric Cylinders (EC)

Primarily designed to apply a force through an extendable rod, electric cylinders are a clean and efficient replacement for hydraulic actuators and pneumatic cylinders, and an alternative to many types of linear transmissions. A wide variety of mounting and coupling alternatives significantly increases their problem solving potential.

Rodless Actuators

Long travel, quiet operation, and high moment loading differentiates rodless actuators from other mechanical transmissions.

Precision Tables

Positioning tables are used when accurate and repeatable motion is critical (1 part per 10,000 or better). These tables offer a wide variety of single and multi-axis configurations, open and closed frame tables, ball or lead screw driven, and overhung and constant support for Kollmorgen geometry configurations.

Model	Max Speed ³	Max Thrust ^{2, 3}	Repeatability ^{4, 5}	Max Payload	Max Travel
	In/s (mm/s)	Lb (N)	In (mm)	Lb (kg)	In (mm)
Electric Cylinders ¹	52.5 (1330)	5620 (25,000)	to 0.0005 (0.013)	Note 1	59.1 (1500)
Rodless Actuators	39	700	to 0.0005	300	108
(screw drive)	(1000)	(3110)	(0.013)	(136)	(2743)
Rodless Actuators	(3000)		to 0.004	300	108
(belt drive)			(0.10)	(136)	(2743)
Precision Tables	32.5 (825)	440 (1960)	3 microns (commer- cial grade) / 1.3 microns (precision grade)	794 (360)	79 (2000)

Notes:

1.

es. Electric cylinders are designed primarily for thrust application where loads are supported externally. Thrust ratings are based on mechanical limits rather than motor limits unless indicated otherwise. Max speed and max thrust ratings are not necessarily available simultaneously Repeatability is dependent on feedback resolution, load, friction, and drive gain settings. Repeatability is unidirectional unless otherwise specified 2.

3. 4. 5.

Electric Cylinder Servo Systems

N2 & EC Series Electric Cylinder Servo Systems

Kollmorgen's Electric Cylinder Servo Systems provide an unprecedented level of fl xibility. Helping you build a better machine, faster.

*	The N2 and EC Series Electric Cylinders offer an unprecedented degree of fl xibility. This fl xibility enables solution to be optimized for the application requirements reducing system cost and minimizing the electric cylinder size.
*	The fl xible design of the N2 and EC Series simplifies engi eering design and system integration by providing an integrated gearing design of both timing belt and helical gearing.
*	Integrated AKM brushless servomotor provides a system solution reducing application and engineering requirements as well as eliminates mechanical interface and interoperability issues.

Standard Configurable Electric Cylinder Designs:

	N2 Series	EC Series
Transport Screw	Precision ballscrew (2 and 5 [rev/in] pitch) Lead screw (5 and 8 [rev/in] pitch)	Precision ballscrew (3 to 32 [mm/rev] lead) Lead screw (4 [mm/rev] lead)
Integrated Gearing	Timing belt (1.0, 1.5, 2.0:1 ratios) Helical gear (2.5, 3.5, 12.0:1 ratios) Inline (direct coupled)	Timing belt (1.0, 1.5, 2.0:1 ratios) Helical gear (2.0, 2.5, 4.0, 5.0, 7.0, 10.0:1 ratios, model dependent) Inline (direct coupled)
Mounting Types	7 Parallel Mounts 5 Inline Mounts	8 Parallel Mounts 5 Inline Mounts
Rod-End Adapters	4 Types (English and Metric)	5 Types (English and Metric)
Stroke Lengths	Standard stroke (2 to 22.5 in) Custom stroke lengths available	Standard stroke lengths EC1 50 to 200 mm (7.87 in) EC2 50 to 750 mm (29.5 in) EC3 50 to 1000 mm (39.4 in) EC4 & EC5 50 to 1500 mm (59.1 in)

Options and Accessories

Electric Cylinder accessories and time-proven options have been designed for the industrial environment to simplify system integration. Options include limit switches, dual rod-end bearings, guide bearing, protective boot, and extended temperature ranges just to name a few. See the option and accessory section on pages 107-115 for more details.

N2 & EC Series Electric Cylinder Servo Systems

The Electric Cylinders Servo Systems are offered with the Advanced Kollmorgen Drive (AKD) series to provide the optimum combination of performance and price. Let your application and system requirements determine what solution integrates the best.

- Single vendor solution for the complete electro-mechanical system ensures system interoperability and a single dedicated Worldwide Motion-control supplier for support.
- The Electric Cylinder Servo Systems are available in drive and control technologies ranging form simple and intuitive positioning drives to fully programmable IEC 61131 based control systems:
- The Electric Cylinder Servo Systems leverage Kollmorgen's AKD diverse
 option configurations and AKM brushless servomotors for complete
 system fl xibility and industry leading servo response and precision.

Flexible Drive
Universal Control
Options &
Power Range

AKD 120 / 240 / 480 Vac

- Base Unit: Analog torque and velocity, CanOpen[®], step and direction, encoder following
- Network Option Cards
- EtherCAT[®], SynqNet[®], Modbus/TCP, and CANopen[®]
- Simple Positioning System
 - Motion Task, Linked Motion Task, ACCEL/DECEL control, S-curve
 - Incremental, absolute positioning, Jog mode and more

AKD[™] Servo Drive

Our AKD series is a complete range of Ethernet-based servo drives that are fast, feature-rich, flexible and integrate quickly and easily into any application. AKD ensures plug-and-play commissioning for instant, seamless access to everything in your machine. And, no matter what your application demands, AKD offers industry-leading servo performance, communication options, and power levels, all in a smaller footprint.

This robust, technologically advanced family of drives delivers optimized performance when paired with our best-in-class components, producing higher quality results at greater speeds and more uptime. With Kollmorgen servo components, we can help you increase your machine's OEE by 50%.

The Benefits of AKD Servo Drive

 Optimized Performance in Seconds 	 Auto-tuning is one of the best and fastest in the industry 				
	 Automatically adjusts all gains, including observers 				
	 Immediate and adaptive response to dynamic loads 				
	 Precise control of all motor types 				
	• Compensation for stiff and compliant transmission and coupling				
Greater Throughput and Accuracy	 Up to 27-bit-resolution feedback yields unmatched precision and excellent repeatability 				
	 Very fast settling times result from a powerful dual processor system that executes industry-leading and patent pending servo algorithms with high resolution 				
	 Advanced servo techniques such as high-order observer and bi-quad filters yield industry-leading machine performance 				
	 Highest bandwidth torque-and-velocity loops. Fastest digital current loop in the market 				
Easy-to-use Graphical User Interface (GUI) for Faster Commissioning and Troubleshooting	 Six-channel real-time software oscilloscope commissions and diagnoses quickly 				
	 Multi-function Bode Plot allows users to quickly evaluate performance 				
	 Auto-complete of programmable commands saves looking up parameter names 				
	 One-click capture and sharing of program plots and parameter settings allow you to send machine performance data instantly 				
	 Widest range of programming options in the industry 				
 Flexible and Scalable to Meet any Application 	• 3 to 24 Arms continuous current; 9 to 48 Arms peak				
	• Very high power density enables an extremely small package				
	 True plug-and-play with all standard Kollmorgen servomotors and actuators 				
	 Supports a variety of single and multi-turn feedback devices— Smart Feedback Device (SFD), EnDat2.2, 01, BiSS, analog Sine/ Cos encoder, incremental encoder, HIPERFACE[®], and resolver 				
	 Tightly integrated Ethernet motion buses without the need to add large hardware: EtherCAT[®], SynqNet[®], Modbus/TCP, EtherNet/IP, PROFINET, and CANopen[®] 				
	 Scalable programmability from base torque-and-velocity through multi-axis master 				

AKD Servo Drive

The AKD servo drive delivers cutting-edge technology and performance with one of the most compact footprints in the industry. These feature-rich drives provide a solution for nearly any application, from basic torque-and-velocity applications, to indexing, to multi-axis programmable motion with embedded Kollmorgen Automation Suite. The versatile AKD sets the standard for power density and performance.

m

KOLLMORGEN

SynqNet Ether	Modbus/TCP
	RoHS
EtherNet/IP	BOFO

General Specifications

120 / 240 Vac 1 & 3 Phase (85 -265 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)	(W	ıl Regen atts) ıms)	Height mm (in)	Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
AKD-■00306	3	9	1100	0	0	168 (6.61)	57 (2.24)	153 (6.02)	184 (7.24)
AKD-■00606	6	18	2000	0	0	168 (6.61)	57 (2.24)	153 (6.02)	184 (7.24)
AKD-■01206	12	30	4000	100	15	195 (7.68)	76 (2.99)	186 (7.32)	215 (8.46)
AKD-■02406	24	48	8000	200	8	250 (9.84)	100 (3.94)	230 (9.06)	265 (10.43)

Industry-leading power density

240/480 Vac 3 Phase (187-528 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)	/er Internal		Height mm (in)	Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
AKD-■00307	3	9	2000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)
AKD-■00607	6	18	4000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)
AKD-■01207	12	30	8000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)
AKD- ■ 02407	24	48	16,000	200	23	310 (12.20)	105 (4.13)	229 (9.02)	264 (10.39)
S748	48	96	35,000	-	-	385 (15.16)	190 (7.48)	244 (9.61)	285 (11.22)
\$772	72	140	50,000	-	_	385 (15.16)	190 (7.48)	244 (9.61)	285 (11.22)

Note: For complete AKD model nomenclature, refer to page 164.

Scalable Programmability

Kollmorgen delivers cutting-edge technology and performance with the AKD servo drive and KAS controls platform. Whether your application requires a single axis or over 100 fully synchronized axes, Kolllmorgen's intuitive software and tools scale to meet your needs. From simple analog torque control to the latest high-performance automation network, the AKD servo drive packs power and flexibility for virtually any application into one of the most compact footprints of any digital servo drive in the industry.

- Patented auto-tuning delivers optimized performance in seconds.
- 1.5MHz current loop and 16KHz velocity loops offers greater bandwidth and performance Optimized performance in seconds
- Greater throughput and accuracy
- Easy-to-use Graphical User Interface (GUI) for faster commissioning and troubleshooting
- Flexible and scalable to meet any application

BASIC Programmable 1.5 Axis Drive ("T" Option)

- Adds BASIC programmability to base AKD
- 4Khz programmable interrupt service routines
- Conditional statements, built-in math functions, user functions and subroutines
- Includes 2 high-speed digital inputs
- Same package size as base drive
- Expandable to 31 digital I/O and 4 analog I/O
- Optional integrated SD card for easy backup and drive cloning
- Includes electronic camming functionality

Single-Axis

KOLLMORGEN

- Controlled by analog torque-and-velocity commands
- Includes electronic gearing via X9 connector
- Includes access to 11 digital I/O and 2 analog I/O on base drive
- Includes 2 high-speed digital inputs
- Expandable to 31 digital I/O and 4 analog I/O

M Service Mo Pee 1

Motion Tasking ("P" Option)

- Adds simple point-and-click indexing to base drive
- Provides user with pre-programmed options
- Guides novice user through simplified steps to create indexing moves
- Network connectivity to EtherCAT[®], CANopen[®], Profinet[®], Ethernet/IP[™], TCP/IP, SynqNet[™] and others
- MODBUS port for communication with HMI

Basic Operation

18

D SERVODRIV

 $\overline{}$

RANGE OF KOLLMORGEN AUTOMATION SUITE CAPABILITIES

AKT I/C

Programmable Drive Multi-Axis Master PDMM ("M" Option)

- Scalable solution for use as a single-axis drive with integrated controller and soft-PLC
- Choose from all five IEC 61131-3 languages for soft PLC process programming
- Program motion using your choice of PLCopen for motion or our innovative Pipe Network
- 4KHz PLC scan rate and EtherCAT updates
- · Complete line of HMI panels with integrated software to simplify GUI development
- Exclusive function blocks, such as "wait." enable your program to act as a scanning or sequential language
- Onboard I/O includes 17 digital (with 2 high speed inputs) and 2 analog

Pipe Network[™]-Visual Programming for Motion.

 Connects to AKT[™] fieldbus I/O for nearly unlimited expandability

 Accelerate development by programming tasks in hours that would otherwise take

 Improved coding quality through visual programming and by using prebuilt modules

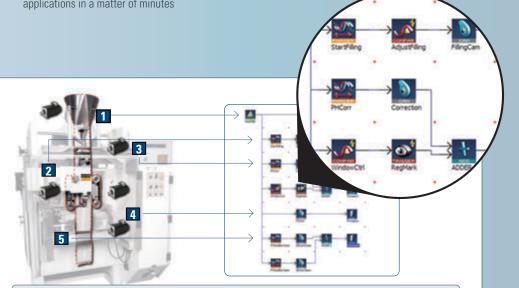
that have been thoroughly tested and

Available on PDMM and PAC controllers

graphical representations

 Easy knowledge transfer, replacing pages of complex code with easily understood

AKD Servo Dri


Seamlessly add additional axes and AKD PDMM serves as a high-performance multi-axis machine controller

- SD card for easy backup and system updates
- Integrated webserver for diagnostics and troubleshooting from any computer or mobile device
- Provide true synchronized-path control of up to 16 axes
- Reduce cabinet size and wiring requirements with a single, compact package
- Easily manage remote I/O and the I/O of all attached drives via EtherCAT
- Use PLCopen for motion or Pipe Network[™] to program sophisticated camming and gearing applications in a matter of minutes

Kollmorgen Automation Suite Programmable Automation Controller (PAC)

- Build EtherCAT-based systems up to 128 axes of high-performance motion using a PAC controller
- This scalable solution provides a full integrated development environment for any application, whether programming a single axis of motion, a multi-axis AKD PDMM system, or a PAC-based system up to 128 axes
- Panel PACs include the choice of a 10", 15" or 17" touchscreen user interface
- PAC controllers include choice of Celeron or Core2Duo processor for scalable performance
- Program camming, gearing and other motion applications using a choice of PLC open for motion or the graphical Pipe Network™

Pipe Network provides a one-to-one translation of a mechanical system into a logical world as shown in the Vertical Form Fill and Seal machine above. Click and build your motion program in minutes, or contact Kollmorgen for examples of common machine architectures to further accelerate your development.

Programming

weeks

optimized

Multi-Axis Programming

www.kollmorgen.com

AKM[™] Servomotor

Kollmorgen's AKM family of servomotors gives you unprecedented choice and flexibility from a wide range of standard products so you can select the best servomotor for your application. By pairing AKM servomotors with our family of plug-and-play AKD[™] servo drives, selecting the right motion control products has never been easier. Pick from thousands of servomotor/servo drive combinations outlined in this selection guide or go to our website to find the best solution for your application.

Standard AKM servomotors and servo drives offer the best of both worlds – the exact specifications of a custom solution with the faster delivery times and lower cost of a standard catalog product. For your truly unique motion control applications, work with our engineering team to customize a solution for your machine design. Either way, standard product or customized, we can help you choose the motion control solution that meets your exact requirements.

The Benefits of AKM Servomotor

Best-in-Class Performance	 Industry-leading motor power density 					
	 Same size AKM/AKD system delivers up to 47% more shaft power than before 					
	• Compensation for stiff and compliant transmissions and couplings					
	Exceptionally low cogging					
• Flexibility to Find an Exact-fit Solution in a Standard Product	 AKM offers 28 frame-stack combinations and 117 standard windings in a single motor line 					
	 Over 500,000 standard motor variations including a wide range of mounting connectivity, feedback and other options 					
	 Simplifies or eliminates mechanical modifications and engineering adaptation 					
	 New Washdown and Food Grade options for AKM 					
	• New higher torque models up to 180 Nm of continuous torque					
Ease-of-Use and Faster Commissioning	• Plug-and-play motor recognition drive commissioning					
	 Reduce cycle time and sensor-and-wiring costs by eliminating traditional homing methods 					
	• Reduction in set-up time for each servo system					

AKM Servomotor Series

AKM Motors Offer Extremely High Torque Density and High Acceleration

The AKM high-performance motor series offers a wide range of mounting, connectivity, feedback and other options. These motors offer superb flexibility to meet application needs with:

- 8 frame sizes (40 to 260 mm)
- 28 frame-stack length combinations
- 117 'standard' windings

Features

Torque

0.16 to 180 Nm continuous stall torque (1.4 to 1590 lb-in) in 28 frame/ stack combinations. Specific torques are often available from multiple frame sizes to optimize mounting and inertia matching capabilities.

Speed

Speeds to 8000 rpm meet high speed application requirements. Windings tailored to lower speeds are also available.

Voltage

AKM motors can be applied to all standard global voltages. Windings are specifically tailored to 75 Vdc, 120, 240, 400 and 480 Vac.

Mounting

Multiple mounting standards are available to meet common European, North American, and Japanese standards.

Feedback

AKM motors include resolver, encoder (commutating), Sine-Absolute encoder or SFD (Smart Feedback Device) feedback options to meet specific application requirements.

Smoothness

Smooth performance results from low-cog, low-harmonic distortion magnetic designs.

Connectivity

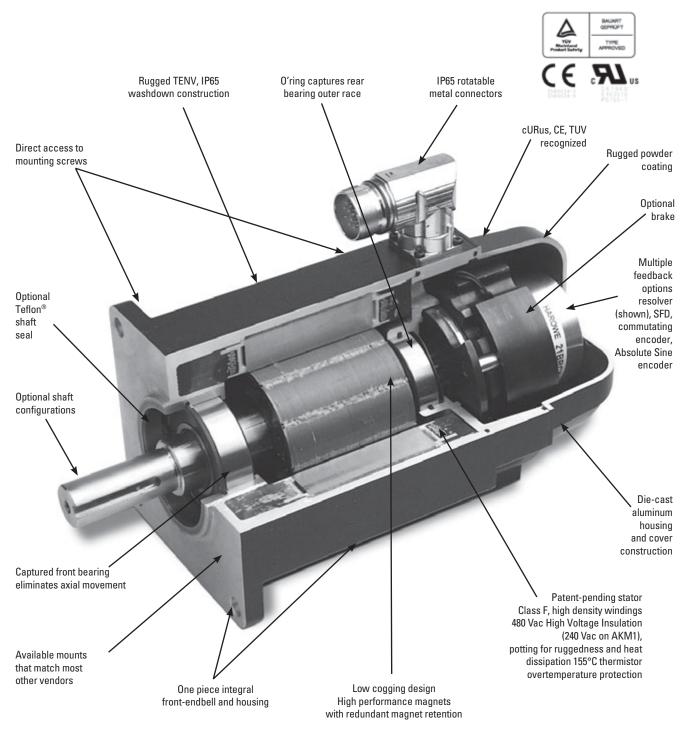
Rugged, rotatable IP65 connectors or low cost IP20 Molex plugs are both available to provide flexibility. Single connectors/plugs (combined power and feedback) are also available to minimize motor and cable cost (SFD only).

Thermal

Windings are rated conservatively at 100°C rise over a 40°C ambient while using 155°C (class F) insulation materials. Motors meet applicable cURus and CE requirements and include thermistors. Thermal ratings at 60°C rise are also provided to meet the needs of specific applications.

Kollmorgen Cables Offer the Complete Solution

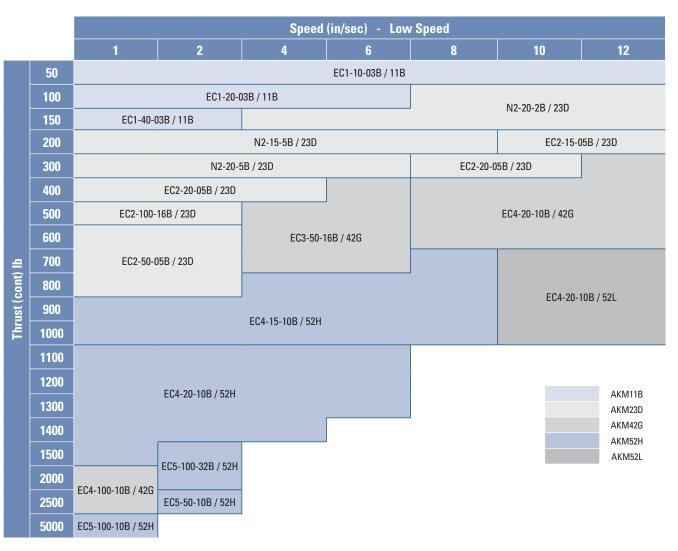
The new Value Line cables provide a cost saving option for applications that don't require long distances or encounter extreme environmental conditions. Value Line is a composite cable that combines power and feedback in one cable to aid in faster machine commissioning. Contact Kollmorgen Customer Support to identify which cable option is best suited for your application.


Options

Additional options:

- · Fail-safe brakes
- New, Teflon® shaft seals
- Feedback devices
- · Shaft and mounting variations
- Custom windings
- Connectivity

K M S


3-D Model Shows Key Design Features

Electric Cylinder Quick Selection Guide

Electric Cylinder / AKM Servomotor Combinations

Low Speed Servo Options (up to 12 in/s)

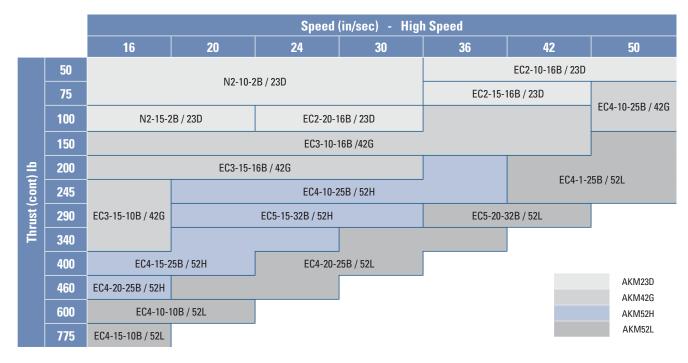
Quick Selection Guide Reference

Systems listed in charts represent the most economical package to meet the criterion.

- 1) Select chart for application speed range
 - Low Speed Speeds up to rated linear speed of 12 in/sec
- 2) Select system by required continuous thrust (lbs) and required rated speed (in/sec).

Other applications considerations (system resolution, inertia ratio, desired safety margins, etc) may result in selection of a different system. For additional AKD system specifications see page 17.

For detailed force speed system curves for AKD, see pages 46-91.


Performance data represents continuous thrust (Ib) at rated speed (in/s).

Based on AKD amplifier with 240 Vac, 3 phase supply.

m

Electric Cylinder / AKM Servomotor Combinations

High Speed Servo Options (12 in/s or greater)

Quick Selection Guide Reference

Systems listed in charts represent the most economical package to meet the criterion.

- 1) Select chart for application speed range
 - High Speed Speeds greater than 12 in/sec
- 2) Select system by required continuous thrust (lbs) and required rated speed (in/sec).

Other applications considerations (system resolution, inertia ratio, desired safety margins, etc) may result in selection of a different system.

For additional AKD system specifications see page 17

For detailed force speed system curves for AKD, see pages 46-91.

Performance data represents continuous thrust (Ib) at rated speed (in/s).

Based on AKD amplifier with 240 Vac, 3 phase supply.

Servomotor Performance Summary

Low Speed Servo Performance

		AKD	Cont	Thrust	Peak	Thrust	Max	
Pg	System	Cont	@ S	peed	@ S ₁	beed	Thrust	Continuous Thrust (lb)
		Amps	lb	in/s	lb	in/s	lb	
52	EC1-AKM11B-	3 A	50	13.0	75	13.0	75	■ 50
52	EC1-AKM13C- E -10-03M	3 A	75	13.0	75	13.0	75	75
46	N2-AKM23D-	3 A	85	12.0	260	12.0	312	■ 85
52	EC1-AKM11B-	3 A	100	6.0	125	6.0	125	1 00
54	EC2-AKM23D-	3 A	109	9.2	337	9.2	396	109
52	EC1-AKM13C-	3 A	125	6.0	125	6.0	125	125
46	N2-AKM23D-	3 A	128	8.0	392	8.0	467	128
52	EC1-AKM11B-	3 A	150	3.0	150	3.0	150	150
47	N2-AKM23D-	3 A	154	15.0	468	15.0	561	1 54
55	EC2-AKM23D-	3 A	160	6.2	499	6.2	582	160
47	N2-AKM23D-	3 A	170	6.0	517	6.0	600	■ 170 ■ 192
47	N2-AKM23D-	3 A	192	12.0	585	12.0	600	192
63	EC3-AKM23D-	3 A	198	10.2	708	9.4	712 790	217
55 63	EC2-AKM23D- - -20-04A EC3-AKM23D- - -50-16B	3 A 3 A	217 253	4.6 6.2	455 885	4.6	909	253
55			255			6.2	809	233
	EC2-AKM23D-	3 A		13.2	809	8.0 6.3		283
64 83	EC3-AKM23D-■■=-15-05B EC5-AKM42G-■■=-10-10B	3 A 6 A	283 284	10.2 15.2	1060 1503	15.2	1070 1005	284
47	N2-AKM23D-	3 A	288	8.0	600	8.0	600	288
64	EC3-AKM23D-	3 A 3 A	365	9.5	1372	5.0	1469	365
56	EC2-AKM23D-	3 A 3 A	366	9.7	770	8.0	809	366
46	N2-AKM23D-	3 A 3 A	384	6.0	600	6.0	600	384
84	EC5-AKM42G-	6 A	396	15.2	1503	9.4	1508	396
84	EC5-AKM42G-	6 A	451	6.6	1530	5.4 6.6	1530	451
73	EC4-AKM42G-	6 A	499	14.0	2005	7.1	2005	499
84	EC5-AKM42G-	6 A	510	13.2	2005	7.1	2003	510
56	EC2-AKM23D-	3 A	522	1.8	809	1.8	809	522
65	EC3-AKM23D-	3 A	563	2.81	1620	2.81	1620	563
72	EC4-AKM42G-	6 A	577	5.1	1959	5.1	1959	577
56	EC2-AKM23D-	3 A	584	3.67	809	3.67	809	584
85	EC5-AKM52H-	6 A	643	14.5	1137	13.0	1974	643
73	EC4-AKM52H-	6 A	666	14.0	1137	13.0	1974	666
65	EC3-AKM42G-	6 A	695	6.25	1620	6.25	1620	695
56	EC2-AKM23D-	3 A	809	0.91	809	0.91	809	809
57	EC2-AKM23D-	3 A	809	2.3	809	2.3	809	809
65	EC3-AKM23D-	3 A	812	1.9	1619	1.9	1619	812
85	EC5-AKM42G-	6 A	884	3.3	2997	3.3	3000	884
85	EC5-AKM52L-	12 A	884	15.0	1891	15.0	2695	884
73	EC4-AKM52H-	6 A	994	9.5	2067	8.0	2698	994
85	EC5-AKM52H-	6 A	994	9.5	2067	8.0	2962	994
75	EC4-AKM52L-■■-20-10B	12 A	1003	14.4	1907	13.5	2698	1003
86	EC5-AKM52L-	12 A	1027	14.0	1966	13.0	3501	1027
86	EC5-AKM52H-	6 A	1067	6.5	1851	6.5	1851	1067
74	EC4-AKM42G-	6 A	1131	2.6	2698	2.6	2698	1131
74	EC4-AKM52H-	6 A	1321	7.2	2187	6.6	2698	1321
86	EC5-AKM52H-	6 A	1321	7.2	2193	6.5	3501	1321
74	EC4-AKM52H-	6 A	1365	5.1	2365	5.1	2365	1365
75	EC4-AKM52L-■■-50-25B	12 A	1392	5.1	2369	5.1	2369	1392
75	EC4-AKM42G-	6 A	1446	2.0	2698	2.0	2698	1446
86	EC5-AKM42G-	6 A	1446	2.0	4898	2.0	4898	1446
87	EC5-AKM52H-	6 A	2091	3.3	3624	3.3	3624	2091
76	EC4-AKM52H-	6 A	2674	2.6	2698	2.6	2698	2674
75	EC4-AKM42G-	6 A	2698	1.04	2698	1.04	2698	2698
87	EC5-AKM42G-	6 A	2828	1.04	5620	1.04	5620	2828
87	EC5-AKM52H-	6 A	3410	2.05	5620	2.05	5620	3410
87	EC5-AKM52H-	6 A	5620	1.04	5620	1.04	5620	5620
Ratings	are based on the AKM servomotor and	the corres	ponding A	AKD Drive	9.			0 1000 2000 3000 4000 5000 6000

Ratings are based on the AKM servomotor and the corresponding AKD Drive. See pages 116-117 for details on Drive & Motor System combinations. Specifications are based on 230 Vac, 3 phase voltage supply. Force Speed Curves located on pages 46-91.

Plotted value is continuous thrust (Ib), refer to chart for the associated rated speed value.

High Speed Servo Performance

	o	AKD		Thrust		Thrust	Max	
Pg	System	Cont Amps	<u>@</u> S lb	peed in/s	@ Sp Ib	in/s	Thrust Ib	Continuous Thrust (lb)
54	EC2-AKM23D-	3 A	59	50.0	221	30.0	222	59
62	EC3-AKM23D-	3 A	59	50.0	221	30.0	222	59
46	N2-AKM23D-	3 A	77	30.0	233	30.0	280	77
54	EC2-AKM23D-	3 A	84	42.0	293	23.0	327	84
62	EC3-AKM23D-	3 A	86	41.0	332	20.0	334	86
82	EC5-AKM42G-	6 A	87	52.5	313	45.0	313	87
70	EC4-AKM42G-	6 A	108	52.0	400	35.0	402	108
54	EC2-AKM23D-	3 A	115	31.0	223	26.0	445	115
46	N2-AKM23D-	3 A	115	20.0	350	20.0	420	115
62	EC3-AKM23D-	3 A	118	30.0	457	12.5	459	118
82	EC5-AKM42G-	6 A	122	52.5	470	30.0	470	122
62	EC3-AKM23D-	3 A	141	21.0	520	13.0	534	141
70	EC4-AKM42G-	6 A	149	47.0	595	24.0	603	149
63	EC3-AKM42G-	6 A	154	45.2	598	24.0	628	154
82	EC5-AKM42G-	6 A	156	45.0	626	22.5	628	156
55	EC2-AKM23D-	3 A	188	16.0	385	16.0	712	188
63	EC3-AKM23D-	3 A	190	18.0	686	10.0	735	190
70	EC4-AKM42G-■■-20-25B	6 A	200	35.0	802	17.5	804	200
82	EC5-AKM52H-	6 A	207	46.0	351	42.0	617	207
64	EC3-AKM42G-	6 A	234	30.0	495	25.0	888	234
70	EC4-AKM52L-	12 A	244	52.5	422	52.5	719	244
71	EC4-AKM52H-	6 A	264	36.0	441	33.0	790	264
83	EC5-AKM52L-	12 A	265	52.0	584	52.0	842	265
71	EC4-AKM52L-	12 A	267	48.5	699	43.0	1078	267
64	EC3-AKM42G-	6 A	269	20.9	958	15.0	1010	269
71	EC4-AKM42G-	6 A	269	21.0	1002	14.2	1005	269
83	EC5-AKM52H- == -15-32B	6 A	312	30.0	626	26.0	925	312
84	EC5-AKM52L-	12 A	314	46.0	614	42.0	1094	314
65	EC3-AKM42G- == -15-10B	6 A	358	18.9	820	15.0	1420	358
72	EC4-AKM42G- == -15-10B	6 A	383	17.5	1501	9.5	1508	383
71	EC4-AKM52H-	6 A	396	24.0	827	20.0	1185	396
72	EC4-AKM52L-■■■-20-25B	12 A	406	35.5	785	33.0	1400	406
83	EC5-AKM52H-	6 A	413	23.0	684	21.0	1094	413
72	EC4-AKM52H-	6 A	529	18.0	879	16.0	1400	529
73	EC4-AKM52L-	12 A	610	21.0	1055	21.0	1797	610
74	EC4-AKM52L-	12 A	772	18.6	1825	17.0	2695	772
	are based on the AKM servomotor and				/e.			0 100 200 300 400 500 600 700 800 900

Ratings are based on the AKM servomotor and the corresponding AKD Drive. See pages 116-117 for details on Drive & Motor System combinations. Specifications are based on 230 Vac, 3 phase voltage supply. Force Speed Curves located on pages 46-91.

Plotted value is continuous thrust (lb), refer to chart for the associated rated speed value.

Electric Cylinder Stepper Systems

The Electric Cylinder Stepper Systems are offered with a versatile stepper drive and multiple hybrid stepper motor sizes to provide system fl xibility. Let your application and system requirements determine what solution integrates best.

- Single vendor solution for the complete electro-mechanical system ensures system interoperability and single dedicated worldwide motion-control supplier for support.
- The Rodless Actuator Stepper Systems are available with standard step and direction drive functions, and enhanced drive technologies incorporating simple program control functionality (P7000 with -PL option).
- The Rodless Actuator Stepper Systems leverage multiple stepper motor sizes to provide the most cost effective solution to meet your machine's performance requirement.

P70630 120/240 VAC • Base Unit: accepts step and direction inputs **Advanced Stepper Motor Control Easy** • An integrated position controller is available (-PN option) Up to 68 absolute or incremental moves Commissioning • Compatible with a Wide Range of Specify detailed move parameters or simply distance and time • Motors Multistepping[™] inserts fine micro-steps to smooth coarse I w speed motion • Advanced auto-tuning provides outstanding low-speed performance

P7000 Stepper Drive Controller

P7000 stepper drives offer a unique level of system functionality, smoothness, high-speed performance and innovation unmatched in the industry.

The compact P7000 is designed to power Kollmorgen step motors ranging from NEMA size 17 up to NEMA size 42. Two power configurations are available for operation directly from AC power, or from a DC power supply.

There are two levels of control offered. The basic drive accepts step and direction inputs. P7000 drives are also available with an integrated position controller (-PN option). The drives are configured by either on-board dip switches, or with the P7000 tools software.

Advanced P7000 Features Make it the Best Choice to Meet Your Application Requirements

Multistepping[™]

Also known as auto-smoothing. The P7000 drive accepts full step pulse commands from the indexer and inserts fine micro-steps to smooth coarse low speed motion. This allows you to significantly upgrade machine performance without having to redesign machine control architecture.

Auto-Tuning

Advanced current auto-tuning techniques provide outstanding lowspeed smoothness. The P7000 senses the motor's characteristics and automatically fine tunes itself to meet your high-performance needs. This reduces installation and set-up time.

Mid-Band Anti-Resonance Control

Reduces negative effects of mechanical resonance, allowing you to get more out of a smaller motor and virtually eliminating nuisance stalls and machine downtime.

Idle Current Reduction

If you do not require the motor's full torque to hold a load at rest, you can select the right amount of current (torque) to reduce motor heating and power consumption. This increases the life of the system.

Dynamic Smoothing

Quasi-S-curve algorithm reduces jerk, especially upon acceleration. Increases mechanical life of the machine and reduces energy consumption.

Intelligent Indexing Option (-PN)

Wizard-like P7000 helps you to develop and link motion tasks such as homing and conditional and unconditional indexing. You can be up-andrunning quickly.

Modbus RTU Compatible

The intelligent indexing option (-PN) supports Modbus RTU to control motion with an external interface device. External interfaces make controlling motion simple for machine operators.

P7000 Tools

The position node option allows you to configure up to 63 absolute or relative moves. You can specify the moves' distance, acceleration, velocity, and deceleration rates, or simply specify the distance and total time for the move - P7000 will perform the calculations automatically.

Specifications	Units	P70530	P70360
Input voltage range	Volts	20 - 75 Vdc	120 or 240 Vac
Continuous current	Amps rms	5	2.5
Microstep peak current	Amps peak	7.1	3.5
Note: For complete P7000 Series model nomenc	lature, refer to page 166.		(h) (f

Electric Cylinder Quick Selection Guide

Electric Cylinder / Stepper Motor Combinations

Low Speed Stepper Options (up to 12 in/s)

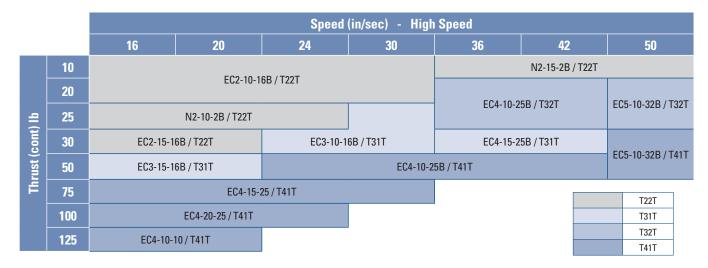
				S	Speed (in/sec)	- Low Spee	d			
		1	2	3	4	6	8	10	12	
	15		EC1-10-03	3B / CTP12						
	30	EC1-20-03	B / CTP12	6B / T22T						
٩	50		N2-20-2B / T22T							
Thrust (cont) lb	100			EC2-15-05B - T22T	-	EC4-15-10B / T32T				
st (ce	150		EC2-20-0	5B / T22T		EC4-20-10B / T32T				
[hru	200	FC2 20 0			EC3-50-10B / T31T EC4-20-10B / T41T				CTP12	
	300	EC2-20-0	DB / 1221						T22T	
	600	EC4-50-1	0B / T32T						T31T T32T	
	1000	EC4-50-1	0B / T41T						T41T	

Quick Selection Guide Reference

Systems listed in charts represent the most economical package to meet the criterion.

- 1) Select chart for application speed range
 - Low Speed Speeds up to rated linear speed of 12 in/sec
- 2) Select system by required continuous thrust (lbs) and required rated speed (in/sec).
- Other applications considerations (system resolution, inertia ratio, desired safety margins, etc) may result in selection of a different system.

For additional P7000 system specifications see pag 29.


For detailed force speed system curves for P7000, see pages 46-91.

Performance data represents continuous thrust (Ib) at rated speed (in/s).

Based on P7000 drive with 120 or 240 Vac single phase supply.

Electric Cylinder / Stepper Motor Combinations

High Speed Stepper Options (12 in/s or greater)

Quick Selection Guide Reference

Systems listed in charts represent the most economical package to meet the criterion.

- 1) Select chart for application speed range
 - High Speed Speeds greater than 12 in/sec
- 2) Select system by required continuous thrust (lbs) and required rated speed (in/sec).

Other applications considerations (system resolution, inertia ratio, desired safety margins, etc) may result in selection of a different system.

For additional P7000 system specifications see page 29.

For detailed force speed system curves for P7000, see pages 46-91.

Performance data represents continuous thrust (Ib) at rated speed (in/s).

Based on P7000 drive with 120 or 240 Vac single phase supply.

Stepper Motor Performance Summary

Low Speed Stepper Performance

Da	Sustam		Thrust peed	Max Thrust	
Pg	System	l lb	in/s	lb	Continuous Thrust (Ib)
53	EC1-CTP12-10-03M	17.7	5.0	75	17.7
53	EC1-CTP12-10L-03M	19.7	5.0	75	1 9.7
49	N2-T22T-10-5A	33	10.0	113	33
53	EC1-CTP12-20-03M	35	2.5	125	3 5
58	EC2-T22T-10-04A	42	7.9	144	42
58	EC2-T22T-20-16B	42	15.7	162	47
56 66	EC3-T22T-20-16B	47	15.7	162	47
49					
49 67	N2-T22T-15-5A	49	6.7	170	49 56
	EC3-T22T-15-10B	56	13.1	194	59
50	N2-T22T-20-2B	59	12.5	204	
59	EC2-T22T-15-04A	62	5.3	211	62
50	N2-T22T-20-5A	66	5.0	226	66
53	EC1-CTP12-40-03M	71	1.25	150	71
50	N2-T22T-10-5B	74	10.0	254	74
59	EC2-T22T-10-05B	75	9.8	259	75
67	EC3-T22T-20-10B	77	9.5	267	77
59	EC2-T22T-20-04A	83	3.9	287	83
68	EC3-T31T-15-10B	92	13.1	444	92
79	EC4-T31T-15-10B	92	13.1	444	92
89	EC5-T31T-15-10B	92	13.1	444	92
90	EC5-T32T-10-10B	100	15.3	569	100
59	EC2-T22T-15-05B	110	6.7	380	110
50	N2-T22T-15-5B	111	6.7	382	—— 111
68	EC3-T22T-15-05B	112	6.6	388	112
80	EC4-T32T-15-10B	121	13.1	853	121
60	EC2-T31T-10-05B	123	9.8	592	123
79	EC4-T31T-20-10B	123	9.8	592	123
90	EC5-T31T-20-10B	123	9.8	592	123
90	EC5-T41T-10-10B	129	15.3	750	129
51	N2-T22T-20-5B	148	5.0	509	148
60	EC2-T22T-20-05B	150	4.9	517	150
68	EC3-T22T-20-05B	155	4.8	533	155
81	EC4-T32T-20-10B	162	9.8	1138	162
91	EC5-T32T-20-10B	162	9.8	1138	162
68	EC3-T31T-15-05B	184	6.6	888	184
80	EC4-T41T-15-10B	194	13.1	1125	194
90	EC5-T41T-15-10B	194	13.1	1125	194
90 60	EC2-T22T-50-04A	200		689	200
60 69	EC3-T31T-50-10B	200	1.57 3.9	1210	200 251
69 81		251	3.9 9.8	1210	251
	EC4-T41T-20-10B				259
91	EC5-T41T-20-10B	259	9.8	1500	
69	EC3-T22T-50-05B	306	2.0	1057	306
60	EC2-T22T-50-05B	360	2.0	809	360
81	EC4-T31T-50-10B	538	2.1	1445	538
91	EC5-T31T-50-10B	538	2.1	1445	538
81	EC4-T32T-50-10B	675	2.1	2700	675
91	EC5-T32T-50-10B	675	2.1	2780	675
81	EC4-T41T-50-10B	1020	2.1	2700	1020
91	EC5-T41T-50-10B	1020	2.1	3660	1020

single phase supply. Plotted

See pages 116-119 for details on Drive & Motor System combinations. Force Speed Curves located on pages 46-91.

Plotted value is continuous thrust (lb), refer to chart for the associated rated speed value.

High Speed Stepper Performance

Pg	System		Thrust beed in/s	Max Thrust Ib	Continuous Thrust (lb)
58	EC2-T22T-10-16B	23	31.5	81	23
66	EC3-T22T-10-16B	23	31.5	81	23
77	EC4-T31T-10-25B	25	49.2	118	25
88	EC5-T31T-15-32B	29	42.0	139	29
88	EC5-T32T-10-32B	29	52.5	178	29
49	N2-T22T-10-2B	29	25.0	102	29
77	EC4-T32T-10-25B	32	49.2	228	32
58	EC2-T22T-15-16B	34	21.4	119	34
66	EC3-T22T-15-16B	35	21.0	121	35
77	EC4-T31T-15-25B	37	32.8	178	37
88	EC5-T32T-15-32B	38	42.0	267	38
66	EC3-T31T-10-16B	38	31.5	185	38
88	EC5-T31T-20-32B	38	31.5	185	38
88	EC5-T41T-10-32B	40	52.5	234	40
49	N2-T22T-15-2B	44	16.7	153	44
78	EC4-T32T-15-25B	49	32.8	341	49
77	EC4-T31T-20-25B	49	24.6	237	49
89	EC5-T32T-20-32B	51	31.5	355	51
78	EC4-T41T-10-25B	52	49.2	300	52
67	EC3-T31T-15-16B	58	21.0	278	58
89	EC5-T41T-15-32B	61	42.0	351	61
67	EC3-T31T-10-10B	61	19.7	296	61
78	EC4-T31T-10-10B	61	19.7	296	61
78	EC4-T32T-20-25B	65	24.6	455	65
79	EC4-T41T-15-25B	78	32.8	450	78
79	EC4-T32T-10-10B	81	19.7	569	81
89	EC5-T41T-20-32B	81	31.5	469	81
80	EC4-T41T-20-25B	103	24.6	600	103
80	EC4-T41T-10-10B	129	19.7	750	129
Ratings are	based the Hybrid stepper motor and P	7000 drive wit	h 120 or 240 V	ac	0 20 40 60 80 100 120 140

Ratings are based the Hybrid stepper motor and P7000 drive with 120 or 240 Vac single phase supply. See pages 116-117 for details on Drive & Motor System combinations.

Force Speed Curves located on pages 46-91.

Plotted value is continuous thrust (Ib), refer to chart for the associated rated speed value.

Continuous Force (Ib)

N2 Series Electric Cylinder Specifications

General Specifications

Travel Lengths

Cylinder	Stroke Designator/Effective Travel Lengths									
Stroke length designator [in]	2.0	4.0	6.0	8.0	12.0	*18.0	*24.0			
Effective Travel Length [in]	2.0	4.0	6.0	8.0	12.0	16.5	22.5			

 * Dual rod-end bearing required for 18 inch and 24 inch stroke units.
 * Effective travel reduced by 1.5 inches respectively with dual rod-end bearing. Custom travel lengths are available.

Construction Materials

Bearing Housings:	Type 380 die cast aluminum, epoxy coated
Cylinder Housing:	6063-T6 aluminum, hard-coated anodized and Teflo ® coated
Thrust Tube:	304 Series Stainless Steel, 1/4 hard, ground and polished
Wiper seal:	Polyurethane

Speed Reducer Versions

Belt/Pulley:	AT-5, polyurethane with steel tensile cords
Helical Gearing:	Alloy steel, case hardened
Support Bearings:	Ball bearings

Transport Screw Versions

Ballscrew:	Carbon steel screw
Ballnut:	Alloy steel, heat-treated ballnut
Lead screw:	Carbon steel screw
Lead nut:	Bronze lead nut (standard, recommended for servo system)
	(Lubricated polyacetal plastic drive nut also available but not
	recommended for use with servomotor based systems.)

System Specifications

Electric Cylinder	Screw-Nut Type	Pitch [revs/in]	Screw Diameter [in]	Efficien y [%]	Minimum Backdrive Load [lb]	Maximum Thrust [Ib]	Maximum Speed [in/s]	Backlash [mm (in)]	Repeatability [mm/300mm (in/ft)]
N2-2B	Ballscrew	2.0	0.625	90	10	* 552	** 30	0.38 (0.015)	+/-0.15 (+/-0.006)
N2-5B	Ballscrew	5.0	0.625	90	20	600	12	0.38 (0.015)	+/-0.15 (+/-0.006)
N2-5A-BZ	Bronze	5.0	0.625	40	400	600	** 12	0.40 (0.016)	+/-0.75 (+/-0.003)

* Thrust limited by AKM23 motor/drive T peak limit
** Maximum speed and Maximum Thrust specification define range of N2 series; not vailable on the same unit. See Thrust Speed curves (pages 46-51) for comprehensive details.

Weight (approximate, without options)

Cylinder- Motor	Weight [kg]	Weight [Ib]
N2-AKM23	= 2.3 + 0.0045 x [in stroke]	= 5.0 + 0.25 x [in stroke]
N2-T22	= 1.9 + 0.0045 x [in stroke]	= 4.2 + 0.25 x [in stroke]

Brushless Servomotor

Thrust Speed Curves: See pages 46-48 Servo System Specifications and Dimensions See page 116

Stepper Motor

Thrust Speed Curves: Stepper System Specifications and Dimensions See pages 49-51 See page 132

S

34

I	Properties								
	Electric	Screw	Pitch	Screw	Т	Overall			
	Cylinder	Туре	[revs/in]	Efficien y [%]	Ratio	Туре	Efficien y [%]	Efficien y [%]	
	N210L-2B	Ballscrew	2.0	90	Inline/direct coupled	N/A	N/A	90	
	N210-2B	Ballscrew	2.0	90	1:1	Timing belt	90	81	
	N215-2B	Ballscrew	2.0	90	1.5:1	Timing belt	90	81	
	N220-2B	Ballscrew	2.0	90	2.0:1	Timing belt	90	81	
	N225-2B	Ballscrew	2.0	90	2.5:1	Helical gear	70	63	
	N210L-5B	Ballscrew	5.0	90	Inline/direct coupled	N/A	N/A	90	
	N210-5B	Ballscrew	5.0	90	1:1	Timing belt	90	81	
	N215-5B	Ballscrew	5.0	90	1.5:1	Timing belt	90	81	
	N220-5B	Ballscrew	5.0	90	2.0:1	Timing belt	90	81	
	N225-5B	Ballscrew	5.0	90	2.5:1	Helical gear	70	63	
	N210L-5A	Lead	5.0	40	Inline/direct coupled	N/A	N/A	40	
	N210-5A	Lead	5.0	40	1:1	Timing belt	90	36	
	N215-5A	Lead	5.0	40	1.5:1	Timing belt	90	36	
	N220-5A	Lead	5.0	40	2.0:1	Timing belt	90	36	
	N225-5A	Lead	5.0	40	2.5:1	Helical gear	70	28	

N2 Series Electric Cylinders - General Specifications

N2 Series Electric Cylinder Inertia						
Rotary Inertia (Reflecte to Motor) = A + B* (Stroke, in) + C * (Load weight, Ib)						
Model	Ratio	Reduction type	Screw	A	B	C
N2 Series				oz-in ²	oz-in ² / in	oz-in ² / lb
N210-5B	1:1	Belt/pulley	Pitch 5 revs/in Dia 0.625 in Ballscrew	0.5702	0.0685	0.0162
N215-5B	1.5:1			0.2756	0.03045	0.0072
N220-5B	2:1			0.1689	0.0171	0.0041
N210-2B	1:1	Belt/pulley	Pitch 2 revs/in Dia 0.625 in Ballscrew	0.6532	0.07555	0.1013
N215-2B	1.5:1			0.3126	0.03355	0.0450
N220-2B	2:1			0.1895	0.01899	0.0253
N210-5A	1:1	Belt/pulley	Pitch 5 revs/in Dia 0.625 in Lead	0.06845	0.06845	0.0162
N215-5A	1.5:1			0.0304	0.0304	0.0072
N220-5A	2:1			0.0171	0.0171	0.0041

To convert inertia units from oz-in² to oz-in-sec² divide by 386.

www.kollmorgen.com

N2 Series Electric Cylinder Specifications

General Specifications

Ballscrew Life

Ballscrew life is rated in inches of travel at a given load. The values in the chart below indicates the travel life where 90% of all units in a sample will continue to work, while 10% have failed. This is similar to the B10 rating of a roller bearing mechanism. Be sure to consider acceleration loads as well as thrust, gravity and friction loads.

Ballscrew Life: Load vs. Travel Life Chart

Environmental Operation (see page 146 for additional information)

Temperature	32° to 140°F, [0° to 60°C] H – High temperature option allows 32° to 160°F, [0° to 70°C] F – Sub-freezing temperature option allows -20° to 105°F, [-29° to 40°C]
Moisture	Humid, but not direct moisture contact W – Water resistant option allows some direct moisture contact
Contaminants	Non-corrosive, non-abrasive. PB — Protective Boot option prevents moisture and dry contaminants from entering the cylinder through the wiper ring on the rod

N2 with AKM23

EC Series Electrical Cylinder Specifications

General Specifications

Travel Lengths

Cylinder	Travel Lengths [mm]											
EC1	50	100	150	200								
EC2	50	100	150	200	250	300	450	600	750			
EC3	50	100	150	200	250	300	450	600	750	1000		
EC4	50	100	150	200	250	300	450	600	750	1000	1250	1500
EC5	50	100	150	200	250	300	450	600	750	1000	1250	1500

Custom strokes available in increments of 10 mm.

Construction Materials

Bearing & Drive Housing: Guide Cylinder: Mounting Plates: Thrust Tube: Thrust Bearings: 6063-T6 aluminum, anodized 6063-T6 aluminum, hard anodized 6061-T6 aluminum and cast aluminum plate, anodized

300 Series Stainless Steel, 1/4 hard and ground

Angular contact, high thrust ball bearings

Speed Reducer Versions

Belt/Pulley: Helical Gearing: AT-5, polyurethane with steel tensile cords Alloy steel, case hardened

Transport Screw Versions

Ballscrew/Ballnut: Lead screw/Lead nut: Heat treated carbon steel alloy Bronze; carbon steel alloy lead screw

Screw Properties								
0 II I	Nominal	Lead [mm (in)] / rev.						
Cylinder	Diameter [mm]	Lead Screw	Ballscrew					
EC1	10		3 (0.118)					
EC2	16	4 (0.157)	5 (0.197)	16 (0.630)				
EC3	20	4 (0.157)	5 (0.197)	10 (0.395)	16 (0.630)			
EC4	25		10 (0.394)	25 (0.984)				
EC5	32		10 (0.394)	32 (1.259)				

Servo System Weight (approximate, without options)

Cylinder- Motor	Weight [kg]	Weight [lb]
EC1-AKM11	= 0.864 + 0.0059 x [mm stroke]	= 1.9 + 0.33 x [in stroke]
EC1-AKM13	= 1.136 + 0.0059 x [mm stroke]	= 2.5 + 0.33 x [in stroke]
EC2-AKM23	= 4.18 + 0.0059 x [mm stroke]	= 9.2 + 0.33 x [in stroke]
EC3-AKM23	= 5.75 + 0.0082 x [mm stroke]	= 12.6 + 0.46 x [in stroke]
EC3-AKM42	= 6.70 + 0.0082 x [mm stroke]	= 14.7 + 0.46 x [in stroke]
EC4-AKM42	= 14.7 + 0.0188 x [mm stroke]	= 32.2 + 1.05 x [in stroke]
EC4-AKM52	= 17.1 + 0.0188 x [mm stroke]	= 37.7 + 1.05 x [in stroke]
EC5-AKM42	= 14.7 + 0.0188 x [mm stroke]	= 32.2 + 1.05 x [in stroke]
EC5-AKM52	= 17.1 + 0.0188 x [mm stroke]	= 37.7 + 1.05 x [in stroke]

Brushless Servomotor

Thrust Speed Curve Pages: EC1 (pg.52), EC2 (pgs. 54-57), EC3 (pgs. 62-65), EC4 (pgs. 70-76), EC5 (pgs. 82-87) Servo System Specifications and Dimensions Pages 116-121

EC Series Electrical Cylinder Specifications

Stepper System Weight (approximate, without options)

Cylinder – Motor	Weight [kg]	Weight [lb]
EC1-CTP12	= 0.85 + 0.0059 x [mm stroke]	= 1.88 + 0.33 x [in stroke]
EC2-T22	= 3.80 + 0.0059 x [mm stroke]	= 8.36 + 0.33 x [in stroke]
EC2-T31	= 5.07 + 0.0059 x [mm stroke]	= 11.2 x 0.33 x [in stroke]
EC3-T22	= 5.37 + 0.0082 x [mm stroke]	= 11.8 + 0.46 x [in stroke]
EC3-T31	= 6.64 + 0.0082 x [mm stroke]	= 14.6 + 0.46 x [in stroke]
EC4-T31	= 13.6 + 0.0188 x [mm stroke]	= 29.9 + 1.05 x [in stroke]
EC4-T32	= 15.1 + 0.0188 x [mm stroke]	= 33.3 + 1.05 x [in stroke]
EC4-T41	= 16.3 + 0.0188 x [mm stroke]	= 35.9 + 1.05 x [in stroke]
EC5-T31	= 13.6 + 0.0188 x [mm stroke]	= 29.9 + 1.05 x [in stroke]
EC5-T32	= 15.1 + 0.0188 x [mm stroke]	= 33.3 + 1.05 x [in stroke]
EC5-T41	= 16.3 + 0.0188 x [mm stroke]	= 35.9 + 1.05 x [in stroke]

Stepper Motor

Thrust Speed Curve Pages: EC1 (pg. 53), EC2 (pgs. 58-60), EC3 (pgs. 66-69), EC4 (pgs. 77-81), EC5 (pgs. 88-91) Stepper System Specifications and Dimensions See page 132

System Specifications - Backlash, Lead Accuracy

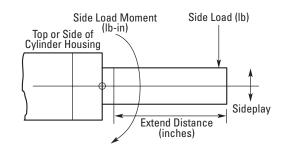
Cylinder	Lead [mm]	Туре	Backlash [mm (in)]	Lead Accuracy [mm/300mm (in/ft)]	Repeatability [mm (in)]
EC1	3	Ball	0.381 (0.015)	+/-0.10 (+/-0.004)	+/-0.013 (+/-0.0005)
EC2	16, 5	Ball	0.25 (0.010)	+/-0.05 (+/-0.002)	+/-0.013 (+/-0.0005)
EGZ	4	Lead	0.40 (0.016)	+/-0.10 (+/-0.004)	+/-0.013 (+/-0.0005)
EC3	16, 10, 5	Ball	0.25 (0.010)	+/-0.05 (+/-0.002)	+/-0.013 (+/-0.0005)
EU3	4	Lead	0.40 (0.016)	+/-0.10 (+/-0.004)	+/-0.013 (+/-0.0005)
EC4	25, 10	Ball	0.30 (0.012)	+/-0.05 (+/-0.002)	+/-0.013 (+/-0.0005)
EC5	32, 10	Ball	0.30 (0.012)	+/-0.05 (+/-0.002)	+/-0.013 (+/-0.0005)

m

Environmental Operation (see page 146 for additional information)

Temperature	-30° to 70°C [-22° to 158°F] When operating below 2°C [35°F] vent tubing fitting must be installed. Consult the factory for more information.
Moisture/Contaminants	IP 54 rated: Polyurethane thrust tube wiper seal. Mating surfaces gasket sealed. Protected against dust and splashing water (non-corrosive, non-abrasive). Limited ingress permitted.
	Vent Tube Fitting: A vent tube fitting is included, which can be installed to permit the Actuator to breathe from a non-contaminated area, or receive a positive pressure continuous purge (14-20 kPa [2-3 psi]).
	PB Protective Boot (IP65) Option: An optional thrust tube boot prevents moisture and dry contaminants from bypassing the thrust tube wiper seal, providing IP65 protection when used with included vent tube fitting. The boot also prevents contaminant buildup on the thrust tube.
	Clean Room & Vacuum Applications: Kollmorgen has designed special actuators for clean room and vacuum applications. Please consult the factory if your application requires special environmental compatibility.
Maintenance	The EC Series Actuator design eliminates the need for most routine maintenance. Re-lubrication is required in high cycle applications.
Lube Port	EC2 - EC5 models include a lube port and adapter for a standard grease gun.

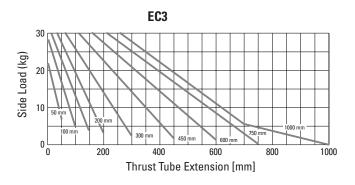
EC4 with AKM42

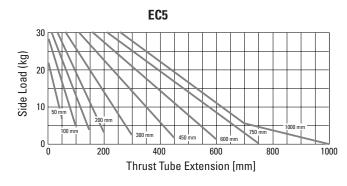

EC Series Electrical Cylinder Specifications

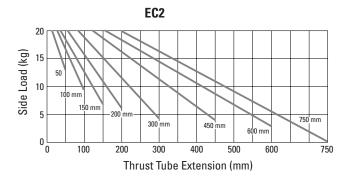
Thrust Tube Torque Capacity

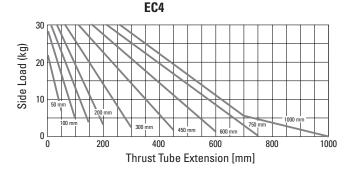
Thrust tube does not rotate during operation.

Maximum allowable torque during operation and installation is shown in the following table:


	Torque Capacity [lb-in (Nm)]
EC1	18 (2.0)
EC2	45 (5.0)
EC3	67 (7.5)
EC4	90 (10)
EC5	90 (10)



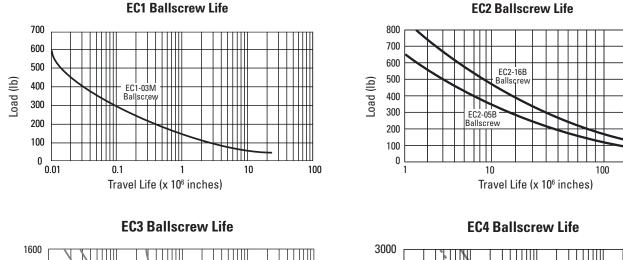

Thrust Tube Side Load Capacity vs. Extension

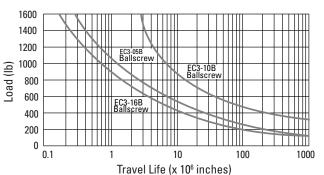


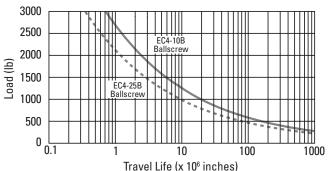
* Side loading is not recomended with the EC1. Side loading will reduce the EC1 life.

E C S E

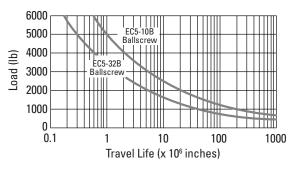
K O L L M O R G E N


Life


Ballscrew


Ballscrew life is rated in inches of travel at a given load. The values in the chart indicate the travel life where 90% of all units in a sample will continue to work, while 10% have failed. This is similar to the B10 rating of a roller bearing mechanism. Be sure to consider acceleration loads as well as thrust, gravity and friction loads.

Lead Screw


Usable life for an lead screw is defined as the length of travel completed before backlash (of lead screw/nut) exceeds 0.020" [0.5 mm]. A travel life of 25 km [1 million inches] under the maximum rated load can be used as a general approximation. However, since directly dependent on application conditions (load, duty cycle, move profiles, and environment), it is difficult to predict a statistical travel life.

EC5 Ballscrew Life

1000

E C S

m

EC Series Electrical Cylinder Specifications

EC1 and EC2 General Specifications

EC Series Inertia								
Rotary Inertia (Reflecte to Motor) = A + B* (Stroke, in) + C * (Load, Ib)								
Model	Ratio	Reduction type	Screw	А	В	C		
EC Series	Παιιυ	neuliciton type	Dia x Lead [mm]	lb-in-s ²	lb-in-s ² / in	lb-in-s ² / lb		
EC110(L)-03M	1:1			1.74 E-04	1.75 E-06	9.15 E-07		
EC120-03M	2:1	Spur Gear	10 x 3	5.60 E-05	4.37 E-07	2.89 E-07		
EC140-03M	4:1			3.15 E-05	1.09 E-07	5.72 E-08		
EC210(L)-16B	1:1			3.18 E-04	1.07 E-05	2.60 E-05		
EC215-16B	1.470588:1	Belt/pulley Helical gear		1.54 E-04	4.96 E-06	1.20 E-05		
EC220-16B	2:1		16 x 16	1.01 E-04	2.68 E-06	6.51 E-06		
EC250-16B	5.021579:1			5.37 E-05	4.25 E-07	1.03 E-06		
EC2100-16B	10.00540:1			4.60 E-05	1.07 E-07	2.60 E-07		
EC210(L)-05B	1:1			2.90 E-04	8.30 E-06	2.54 E-06		
EC215-05B	1.470588:1	Belt/pulley		1.41 E-04	3.84 E-06	1.18 E-06		
EC220-05B	2:1		16 x 5	9.33 E-05	2.07 E-06	6.36 E-07		
EC250-05B	5.021579:1			5.25 E-05	3.29 E-07	1.01 E-07		
EC2100-05B	10.00540:1	Helical gear		4.57 E-05	8.29 E-08	2.54 E-08		
EC210(L)-04A	1:1			2.89 E-04	8.20 E-06	1.63 E-06		
EC215-04A	1.470588:1	Belt/pulley		1.41 E-04	3.79 E-06	7.53 E-07		
EC220-04A	2:1		16 x 4	9.33 E-05	2.05 E-06	4.07 E-07		
EC250-04A	5.021579:1			5.25 E-05	3.25 E-07	6.45 E-08		
EC2100-04A	10.00540:1	Helical gear		4.57 E-05	8.19 E-08	1.626 E-08		

ш

C S E

RIES

KOLLMORGEN

m
C
S
m
R
_
ш
S
m
-
m
C
-
70
_
C
⊳
-
C
~
_
Z
m
30
S
Ρ
m
C
_
Т
- 0
Þ
4
_
0
z
S

EC3 General Specifications

EC Series Inertia							
Rotary Inertia (Reflecte to Motor) = A + B* (Stroke, in) + C * (Load, Ib)							
Model	Ratio	Reduction type	Screw	А	В	C	
EC 3 Series	กลแบ		Dia x Lead [mm]	lb-in-s ²	lb-in-s ² / in	lb-in-s ² / lb	
EC310(L)-16B	1:1			1.19 E-03	1.18 E-05	2.60 E-05	
EC315-16B	1.5:1	Belt/pulley		7.44 E-04	5.23 E-06	1.16 E-05	
EC320-16B	2.0625:1		16 x 16	4.78 E-04	2.77 E-06	6.12 E-06	
EC350-16B	5.037716:1	Holical goor		2.28 E-04	4.64 E-07	1.03 E-06	
EC370-16B	7.000326:1	Helical gear		1.98 E-04	2.40 E-07	5.31 E-07	
EC310(L)-10B	1:1	Belt/pulley	20 x 10	1.20 E-03	1.87 E-05	1.02 E-05	
EC315-10B	1.5:1			7.43 E-04	8.33 E-06	4.52 E-06	
EC320-10B	2.0625:1			4.81 E-04	4.41 E-06	2.39 E-06	
EC350-10B	5.037716:1			2.29 E-04	7.38 E-07	4.01 E-07	
EC370-10B	7.000326:1	Helical gear		1.98 E-04	3.82 E-07	2.08 E-07	
EC310(L)-05B	1:1			1.20 E-03	1.87 E-05	1.02 E-05	
EC315-05B	1.5:1	Belt/pulley		7.49 E-04	8.33 E-06	4.52 E-06	
EC320-05B	2.0625:1		20 x 5	4.81 E-04	4.41 E-06	2.39 E-06	
EC350-05B	5.037716:1	Helical gear		2.28 E-04	6.95 E-07	1.00 E-07	
EC370-05B	7.000326:1	Helical gear		1.97 E-04	3.60 E-07	5.19 E-08	
EC310(L)-04A	1:1			2.89 E-04	8.20 E-06	1.63 E-06	
EC315-04A	1.5:1	Belt/pulley		1.41 E-04	3.79 E-06	7.53 E-07	
EC320-04A	2.0625:1		20 x 4	9.33 E-05	2.05 E-06	4.07 E-07	
EC350-04A	5.037716:1	Helical gear		5.25 E-05	3.25 E-07	6.45 E-08	
EC370-04A	7.000326:1			4.57 E-05	8.19 E-08	1.63 E-08	

EC Series Electrical Cylinder Specifications

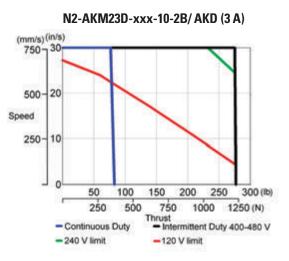
EC4 General Specifications

EC Series Inertia								
Rotary Inertia (Reflecte to Motor) = A + B* (Stroke, in) + C * (Load, Ib)								
Model	Reduction		Screw	А	В	C		
EC 4 Series	Ratio	type	Dia x Lead [mm]	lb-in-s ²	lb-in-s ² / in	lb-in-s ² / lb		
EC410(L)-25B	1:1	Belt/pulley		4.91 E-03	7.01 E-05	6.36 E-05		
EC415-25B	1.5:1		25 x 25	2.80 E-03	3.18 E-05	2.83 E-05		
EC420-25B	2:1			2.71 E-03	1.75 E-05	1.59 E-05		
EC450-25B	5.110442:1			6.27 E-04	2.69 E-06	2.43 E-06		
EC4100-25B	10.00729:1	Helical gear		3.47 E-04	7.00 E-07	6.35 E-07		
EC410(L)-10B	1:1			4.68 E-03	5.54 E-05	1.02 E-05		
EC415-10B	1.5:1	Belt/pulley		2.70 E-03	2.46 E-05	4.52 E-06		
EC420-10B	2:1		25 x 10	2.65 E-03	1.39 E-05	2.54 E-06		
EC450-10B	5.110442:1			6.18 E-04	2.12 E-06	3.90 E-07		
EC4100-10B	10.00729:1	Helical gear		3.45 E-04	5.53 E-07	1.020 E-07		

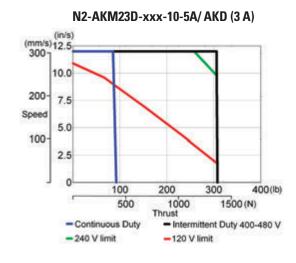
EC4 with AKM42

ш

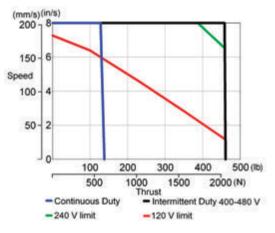
EC Series Inertia									
	Rotary Inertia (Reflecte to Motor) = A + B* (Stroke, in) + C * (Load, Ib)								
Model	Ratio	Reduction	Screw	А	В	C			
EC 5 Series	המנוס	type	Dia x Lead [mm]	lb-in-s ²	lb-in-s ² / in	lb-in-s ² / lb			
EC510(L)-32B	1:1			5.63 E-03	1.67 E-04	1.04 E-04			
EC515-32B	1.5:1	Belt/pulley	Belt/pulley 32 x 32	3.12 E-03	7.41 E-05	4.63 E-05			
EC520-32B	2:1			2.89 E-03	4.17 E-05	2.60 E-05			
EC550-32B	5.110442:1	Heller Large		6.54 E-04	6.38 E-06	3.99 E-06			
EC5100-32B	10.00729:1	Helical gear		3.55 E-04	1.66 E-06	1.04 E-06			
EC510(L)-10B	1:1			5.16 E-03	1.41 E-04	1.02 E-05			
EC515-10B	1.5:1	Belt/pulley		2.91 E-03	6.26 E-05	4.52 E-06			
EC520-10B	2:1		32 x 10	2.78 E-03	3.52 E-05	2.54 E-06			
EC550-10B	5.110442:1	Heller Large		6.37 E-04	5.39 E-06	3.90 E-07			
EC5100-10B	10.00729:1	Helical gear		3.50 E-04	1.41 E-06	1.02 E-07			

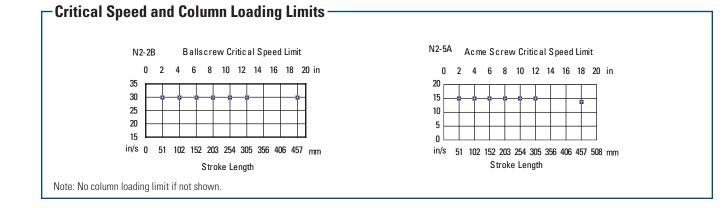

EC5 General Specifications

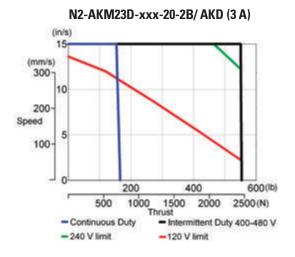
EC5 with AKM42

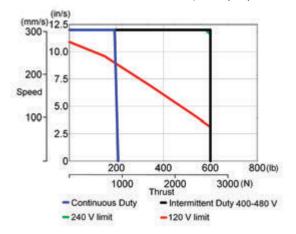

N2 Series Perfomance Curves

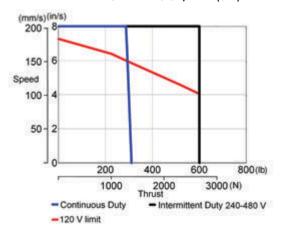
N2 Series Servo Thrust Speed Curves

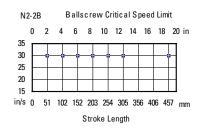


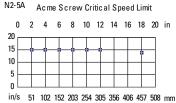

N2-AKM23D-xxx-15-2B/AKD (3 A)

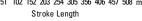


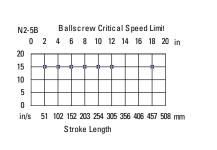

N2-AKM23D-xxx-15-5A/ AKD (3 A)


N2-AKM23D-xxx-10-5B/ AKD (3 A)

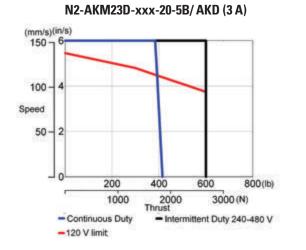

(mm/s)(in/s) 150 - 6 100 4 Speed 50 -2 200 400 600 800(lb) 2000 Thrust 1000 3000 (N) - Continuous Duty - Intermittent Duty 400-480 V - 240 V limit -120 V limit

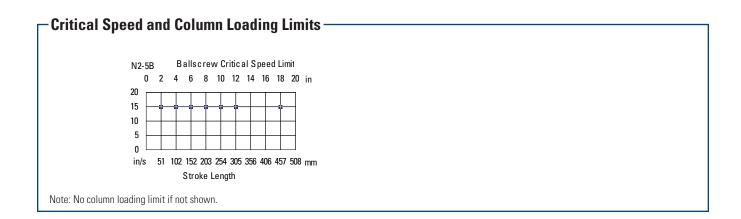

N2-AKM23D-xxx-20-5A/AKD (3 A)


N2-AKM23D-xxx-15-5B/ AKD (3 A)

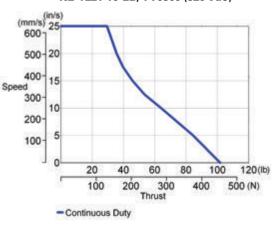


-Critical Speed and Column Loading Limits

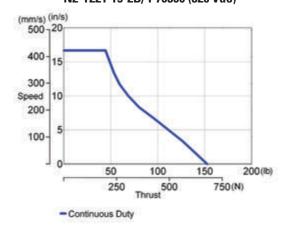



Note: No column loading limit if not shown.

N 2

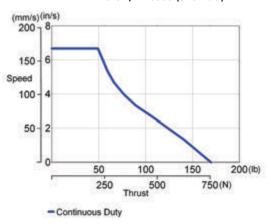

N2 Series Perfomance Curves

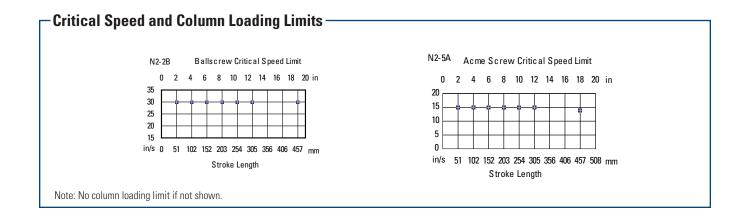
N2 Series Servo Thrust Speed Curves



KOLLMORGEN

N2-T22T-10-2B/ P70360 (320 Vdc)


N2-T22T-15-2B/ P70360 (320 Vdc)

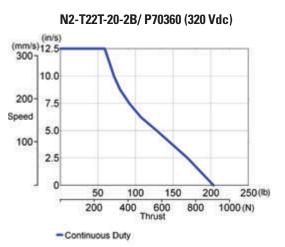


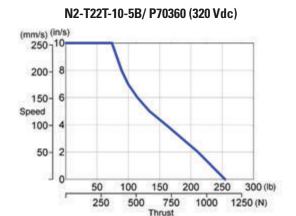
(mm/s) (in/s) 250 10 200-8 150 6 Speed 100-4 50-2 0 25 50 75 100 125(lb) 500(N) 100 200 300 400 Thrust - Continuous Duty

N2-T22T-10-5A/ P70360 (320 Vdc)

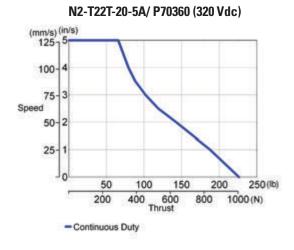
N2-T22T-15-5A/ P70360 (320 Vdc)

PERFOMANCE CURVES

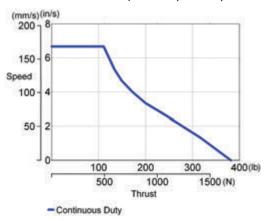

N 2


SER

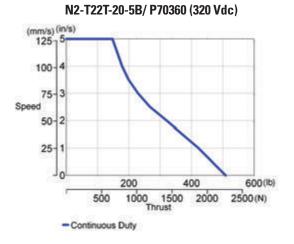
ΙΕS

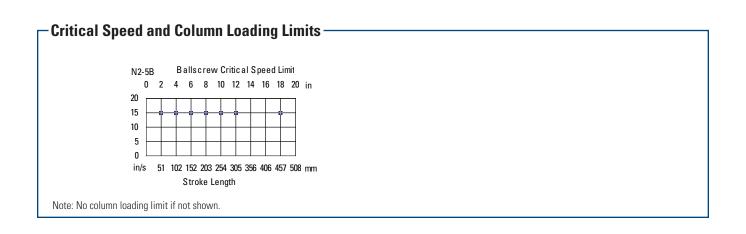

N2 Series Perfomance Curves

N2 Series Stepper Thrust Speed Curves

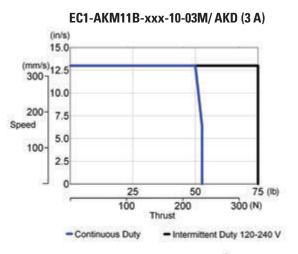


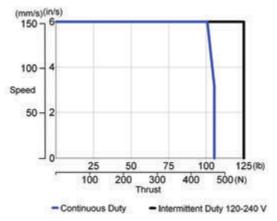
- Continuous Duty

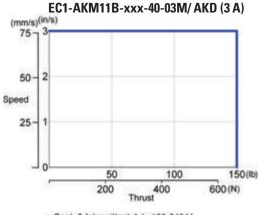



N2-T22T-15-5B/ P70360 (320 Vdc)

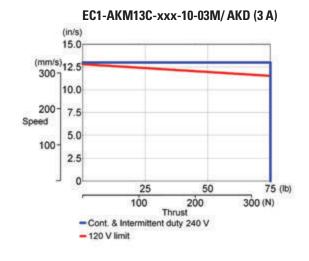
Critical Speed and Column Loading Limits N2-5A Ballscrew Critical Speed Limit **Ballscrew Critical Speed Limit** Acme Screw Critical Speed Limit N2-2B N2-5B 0 2 4 6 8 10 12 14 16 18 20 in 0 2 4 6 8 10 12 14 16 18 20 in 0 2 4 6 8 10 12 14 16 18 20 in 20 35 20 30 15 15 25 10 10 20 5 5 15 0 0 in/s 0 51 102 152 203 254 305 356 406 457 mm 51 102 152 203 254 305 356 406 457 508 mm in/s 51 102 152 203 254 305 356 406 457 508 mm in/s Stroke Length Stroke Length Stroke Length Note: No column loading limit if not shown.



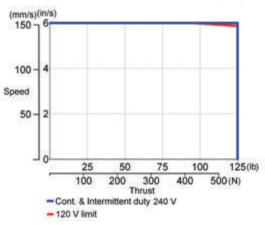


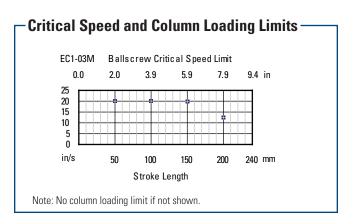

EC1 Series Perfomance Curves

EC1 Series Servo Thrust Speed Curves



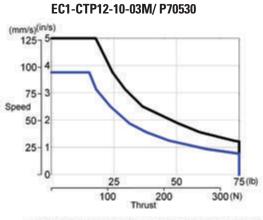
EC1-AKM11B-xxx-20-03M/ AKD (3 A)





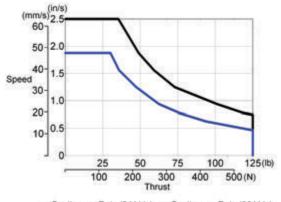
- Cont. & Intermittent duty 120-240 V

EC1-AKM13C-xxx-20-03M/AKD (3 A)

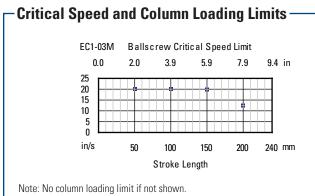


KOLLMORGEN

75(lb)


300 (N)

EC1 Series Stepper Thrust Speed Curves



- Continuous Duty (24 Vdc) - Continuous Duty (36 Vdc)

EC1-CTP12-20-03M/ P70530

- Continuous Duty (24 Vdc) - Continuous Duty (36 Vdc)

25

100

50

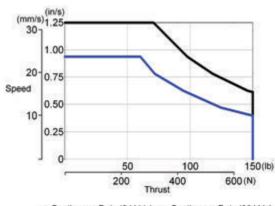
200 Thrust

- Continuous Duty (24 Vdc) - Continuous Duty (36 Vdc)

EC1-CTP12-10L-03M/ P70530

(mm/s)(in/s) 125 5

100-4

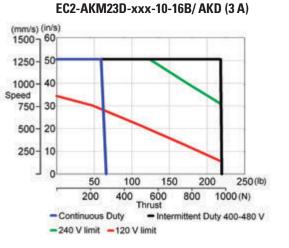

Speed

75-3

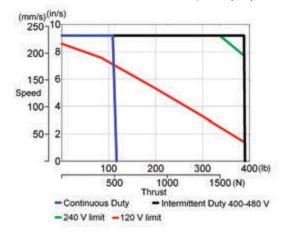
50-2

25-1

0

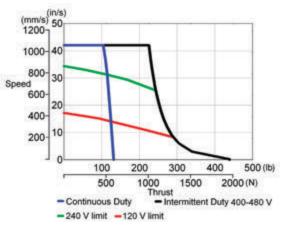


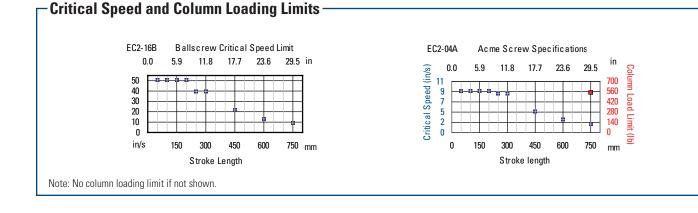
- Continuous Duty (24 Vdc) - Continuous Duty (36 Vdc)


EC1-CTP12-40-03M/ P70530

EC2 Series Perfomance Curves

EC2 Series Servo Thrust Speed Curves


EC2-AKM23D-xxx-10-04A/ AKD (3 A)


(mm/s) (in/s) 1500 - 60 50 1250-1000 40 Speed 750-30 500 20 250-10 0 400(lb) 100 200 300 500 1000 1500 (N) Thrust - Continuous Duty - Intermittent Duty 400-480 V -240 V limit -120 V limit

EC2-AKM23D-xxx-15-16B/ AKD (3 A)

EC2-AKM23D-xxx-20-16B/ AKD (3 A)

KOLLMORGEN

S

54

E C 2

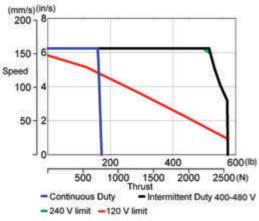
SERIE

S

PERFO

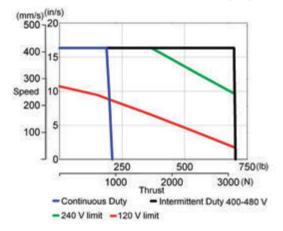
 \leq

A N


С

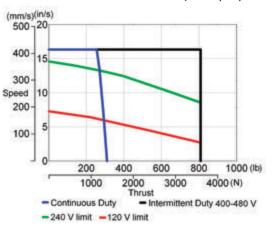
ш

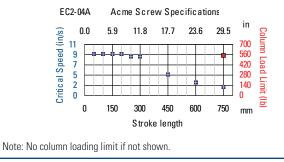
СU

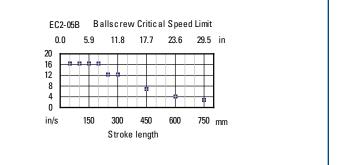

RVES

EC2 Series Servo Thrust Speed Curves

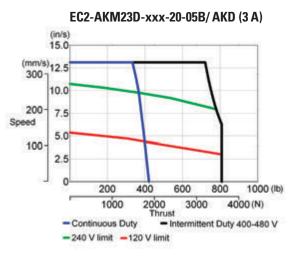
EC2-AKM23D-xxx-15-04A/ AKD (3 A)

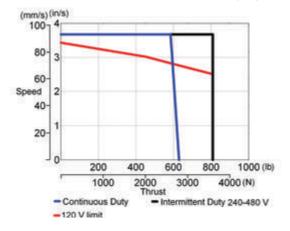

EC2-AKM23D-xxx-10-05B/ AKD (3 A)


(mm/s)(in/s) 125_5 100-75-3 Speed 50-2 25-1 0 200 400 600 800(lb) 2000 1000 3000 (N) Thrust - Continuous Duty Intermittent Duty 240-480 V -120 V limit


EC2-AKM23D-xxx-20-04A/AKD (3 A)

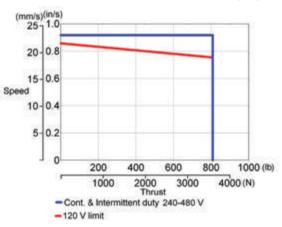
EC2-AKM23D-xxx-15-05B/ AKD (3 A)

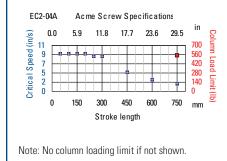


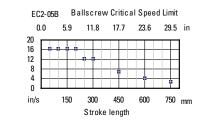


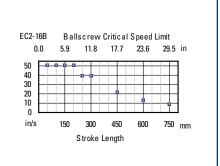
EC2 Series Perfomance Curves

EC2 Series Servo Thrust Speed Curves

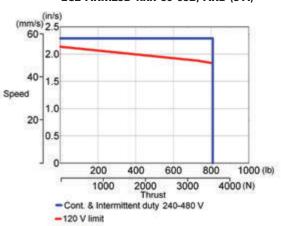

EC2-AKM23D-xxx-100-16B/ AKD (3 A)

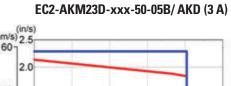

(mm/s)(in/s) 50 2.0 40 1.5 30 eed 1.0 20 0.5 10 200 400 600 800 1000 (lb) 1000 2000 4000 (N) 3000 Thrust - Continuous Duty - Intermittent Duty 240-480 V -120 V limit

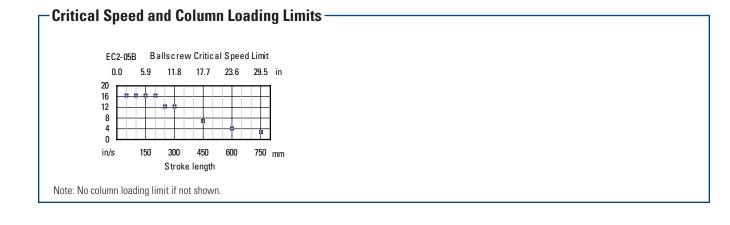

EC2-AKM23D-xxx-50-04A/ AKD (3 A)


EC2-AKM23D-xxx-100-04A/ AKD (3 A)

- Critical Speed and Column Loading Limits

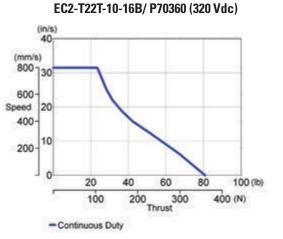


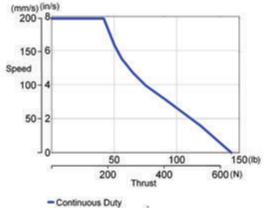


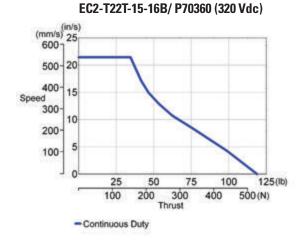

S

KOLLMORGEN

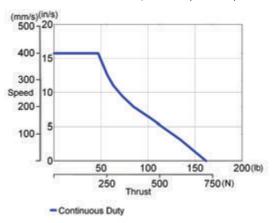
EC2 Series Servo Thrust Speed Curves



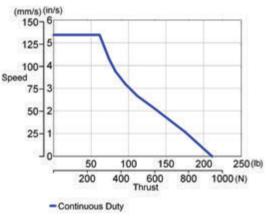

EC2 Series Perfomance Curves



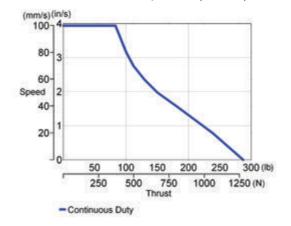
EC2 Series Stepper Thrust Speed Curves

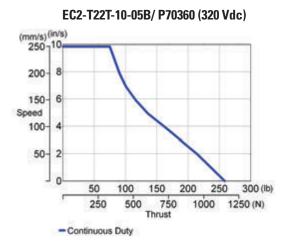


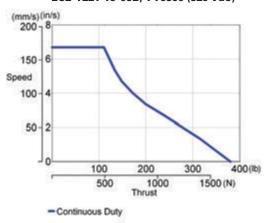

EC2-T22T-10-04A/ P70360 (320 Vdc)

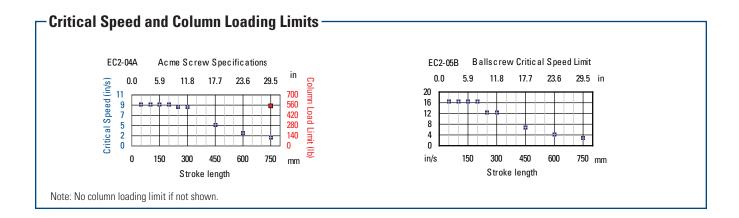


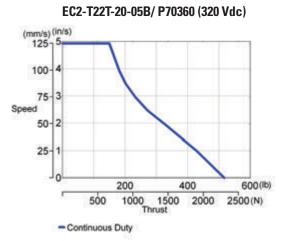
EC2-T22T-20-16B/ P70360 (320 Vdc)

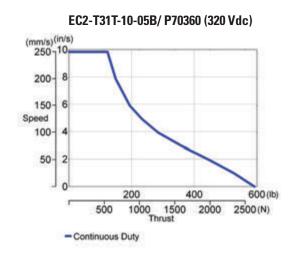


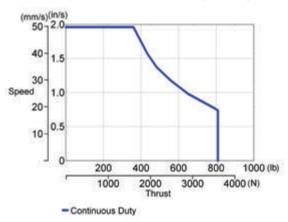

EC2 Series Stepper Thrust Speed Curves

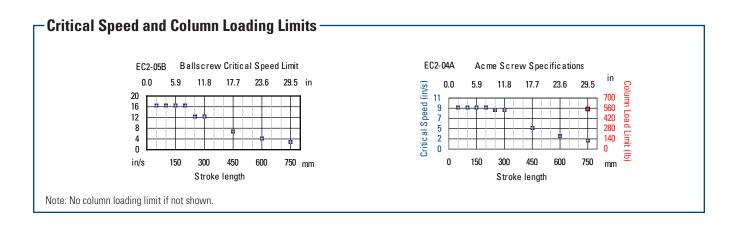

EC2-T22T-15-04A/ P70360 (320 Vdc)


EC2-T22T-20-04A/ P70360 (320 Vdc)

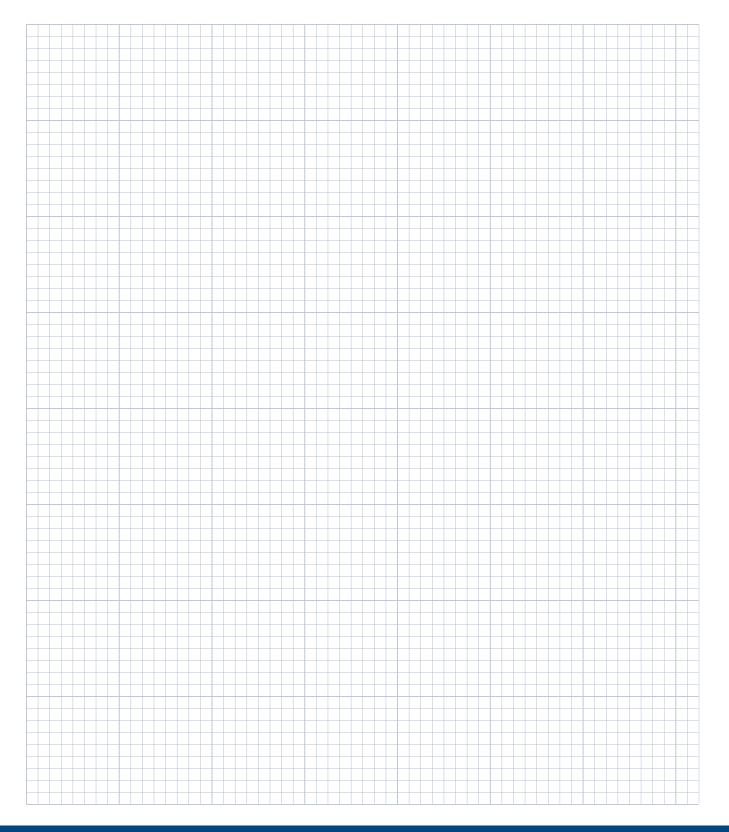

EC2-T22T-15-05B/ P70360 (320 Vdc)




EC2 Series Perfomance Curves

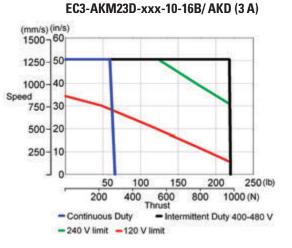

EC2 Series Stepper Thrust Speed Curves

EC2-T22T-50-05B/ P70360 (320 Vdc)

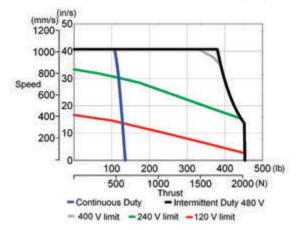


EC2-T22T-50-04A/ P70360 (320 Vdc) (mm/s)(in/s) 50 2.0 40 1.5 30 Speed 1.0 20-0.5

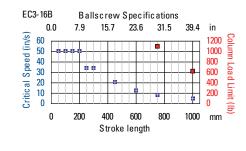
- Continuous Duty

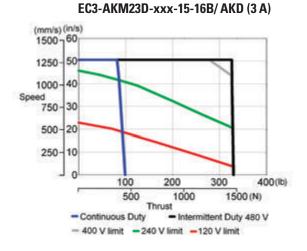

10 0 750(lb) 250 500 3000 (N) 1000 2000 Thrust

Notes

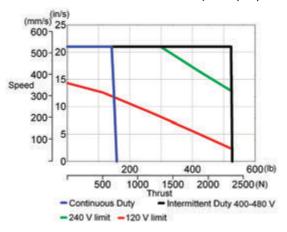


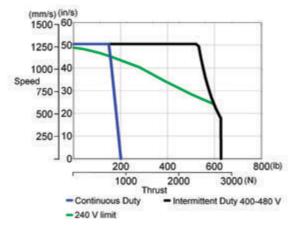
EC3 Series Perfomance Curves


EC3 Series Servo Thrust Speed Curves

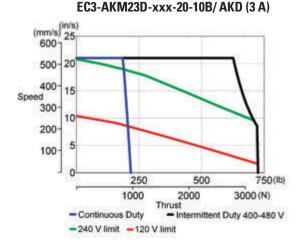


EC3-AKM23D-xxx-20-16B/ AKD (3 A)



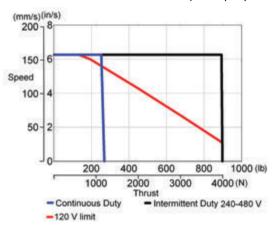


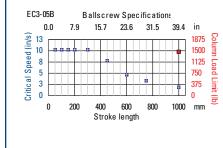
EC3-AKM23D-xxx-15-10B/ AKD (3 A)

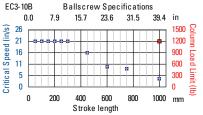


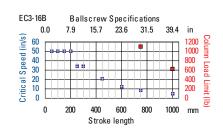
S

EC3-AKM42G-xxx-10-16B/ AKD (6 A)

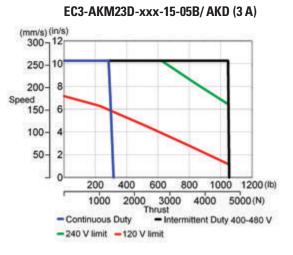


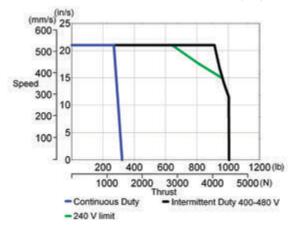

(mm/s)(in/s) 300_12 250-10 200-8 Speed 150-6 100-4 50-2 0 250 500 750(lb) 1000 2000 3000 (N) Thrust - Continuous Duty Intermittent Duty 400-480 V - 240 V limit - 120 V limit


EC3-AKM23D-xxx-10-05B/ AKD (3 A)

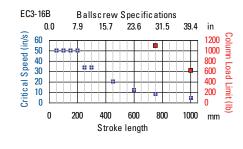

EC3-AKM23D-xxx-50-16B/ AKD (3 A)

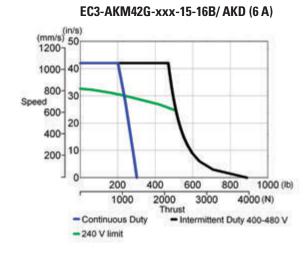
-Critical Speed and Column Loading Limits





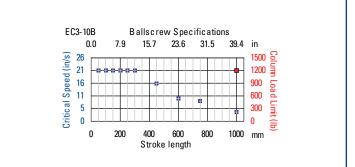
EC3 Series Perfomance Curves


EC3 Series Servo Thrust Speed Curves



EC3-AKM42G-xxx-10-10B/ AKD (6 A)





EC3-AKM23D-xxx-20-05B/ AKD (3 A)

Е С

ω

ш

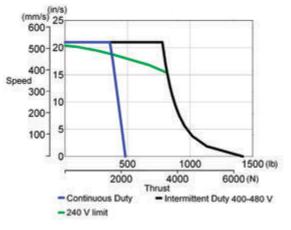
S ERIE

S

P E

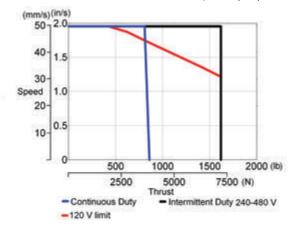
RFO

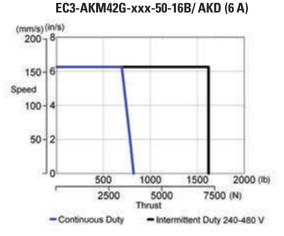
 \leq

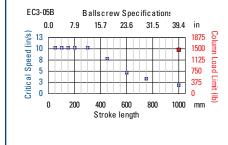

⊳ Z

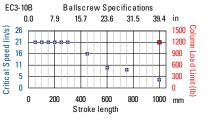
С ш

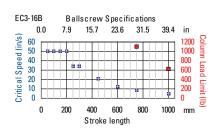
С \subset


RVES


EC3 Series Servo Thrust Speed Curves


EC3-AKM42G-xxx-15-10B/ AKD (3 A)


EC3-AKM23D-xxx-50-05B/ AKD (3 A)



Critical Speed and Column Loading Limits

2500 5000 7500 (N) Thrust - Continuous Duty - Intermittent Duty 240-480 V

1500

2000 (lb)

1000

EC3-AKM23D-xxx-70-10B/ AKD (3 A)

(mm/s) (in/s) 75 _ 3.0

50 2.0

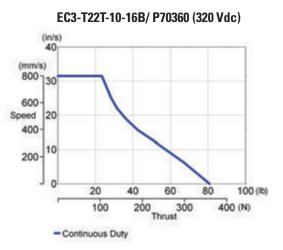
Speed

2.5

1.5

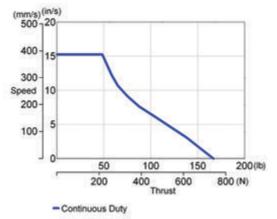
0.5

n

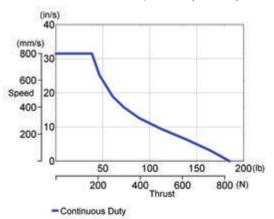

-120 V limit

500

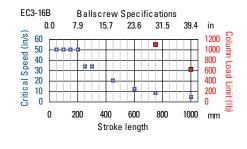
25-1.0


EC3 Series Perfomance Curves

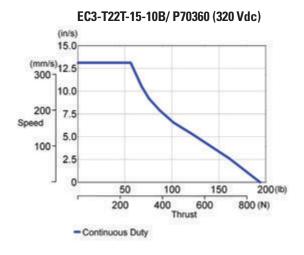
EC3 Series Stepper Thrust Speed Curves



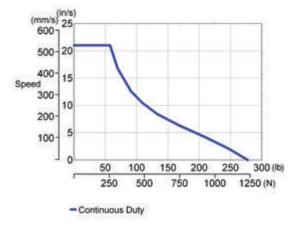
EC3-T22T-15-16B/ P70360 (320 Vdc) (mm/s) 25 600-500-20 400 15 Speed 300 10 200 5 100 0 25 100 125(lb) 50 75 100 200 300 400 500 (N) Thrust - Continuous Duty

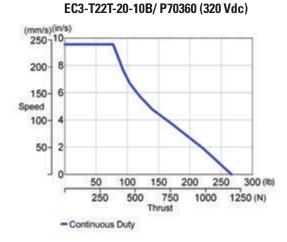

EC3-T22T-20-16B/ P70360 (320 Vdc)

EC3-T31T-10-16B/ P70360 (320 Vdc)

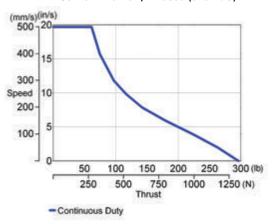


E C

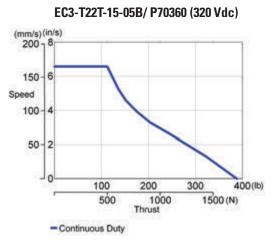

ω S

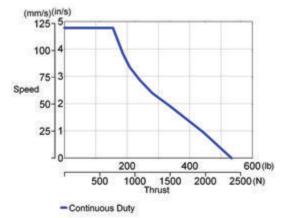

KOLLMORGEN

EC3 Series Stepper Thrust Speed Curves

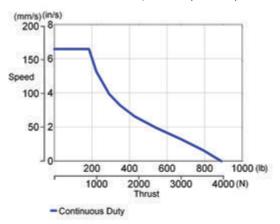


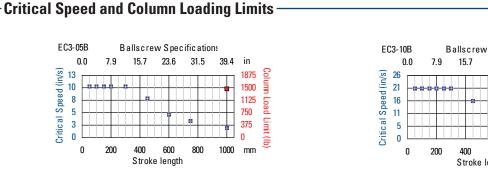
EC3-T31T-15-16B/ P70360 (320 Vdc)

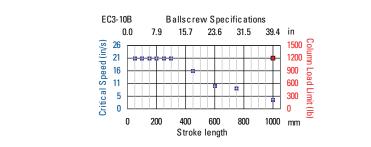

EC3-T31T-10-10B/ P70360 (320 Vdc)


EC3 Series Perfomance Curves

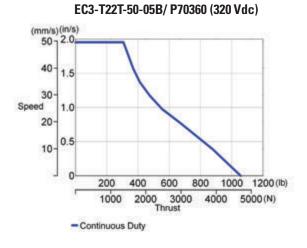
EC3 Series Stepper Thrust Speed Curves

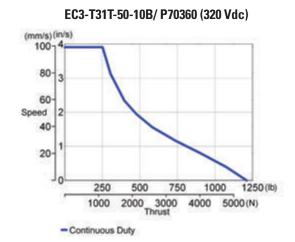


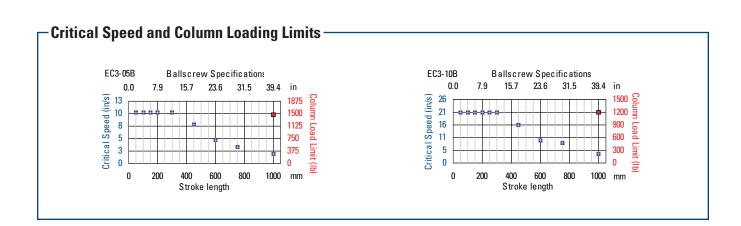

EC3-T31T-15-10B/ P70360 (320 Vdc) (in/s) 15.0 (mm/s)12.5 300 10.0 200 7.5 Speed 5.0 100 2.5 0 300 400 500 (lb) 100 200 500 1000 1500 2000 (N) - Continuous Duty


EC3-T22T-20-05B/ P70360 (320 Vdc)

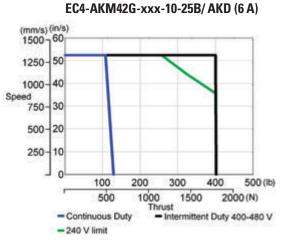
EC3-T31T-15-05B/ P70360 (320 Vdc)

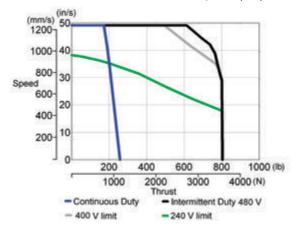




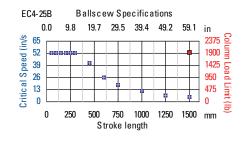

m C

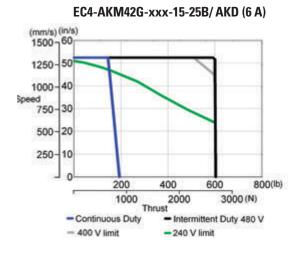
ω



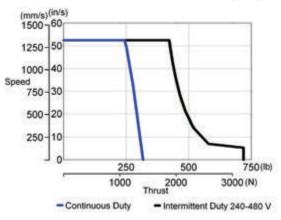

ш

EC4 Series Perfomance Curves

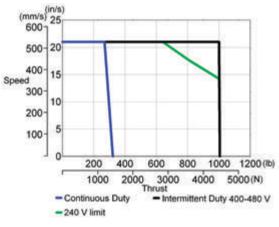

EC4 Series Servo Thrust Speed Curves



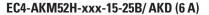
EC4-AKM42G-xxx-20-25B/ AKD (6 A)

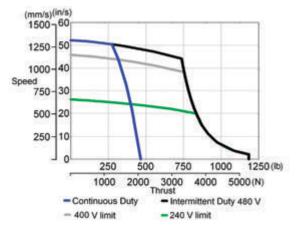


- Critical Speed and Column Loading Limits -

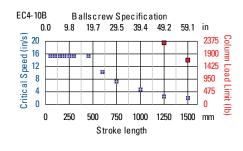


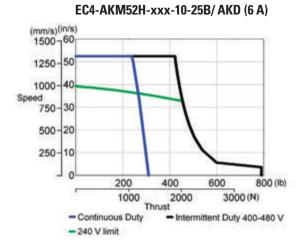
EC4-AKM52L-xxx-10-25B/ AKD (12 A)

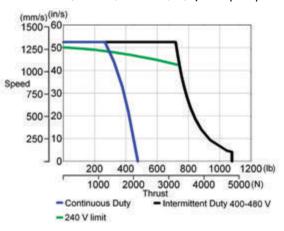


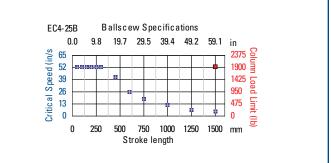

KOLLMORGEN

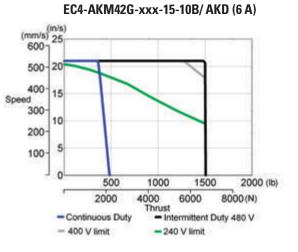
S

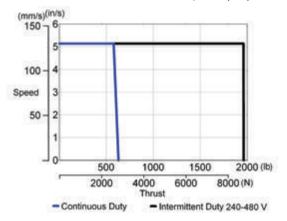


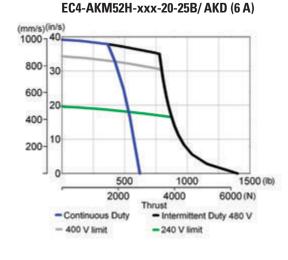

EC4-AKM42G-xxx-10-10B/ AKD (6 A)



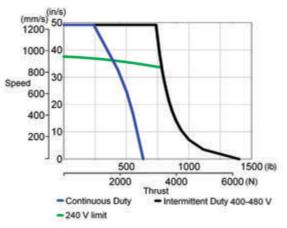



EC4-AKM52L-xxx-15-25B/ AKD (12 A)

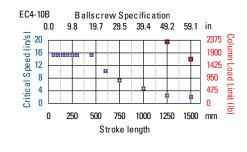


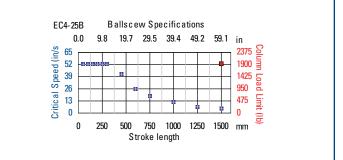

EC4 Series Perfomance Curves

EC4 Series Servo Thrust Speed Curves

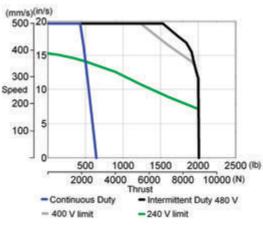


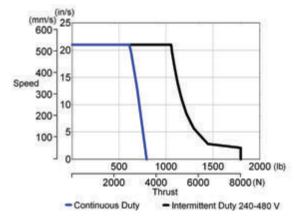
EC4-AKM42G-xxx-50-25B/ AKD (6 A)



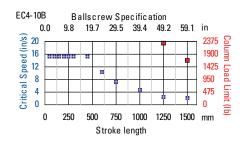


EC4-AKM52L-xxx-20-25B/ AKD (12 A)



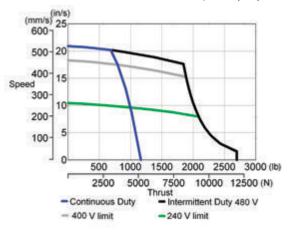

E C

4

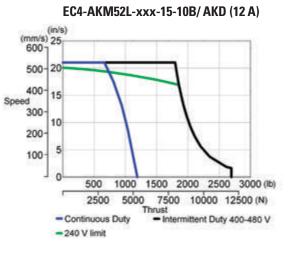


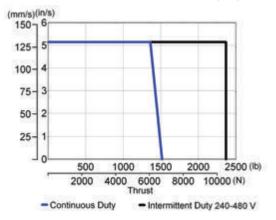
EC4-AKM42G-xxx-20-10B/ AKD (6 A)

EC4-AKM52L-xxx-10-10B/ AKD (12 A)

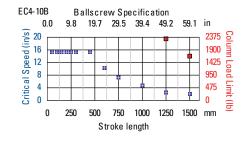


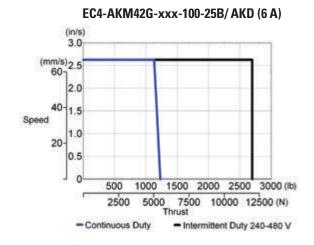
EC4-AKM52H-xxx-10-10B/ AKD (6 A) (in/s) (mm/s) 25 600 500-20 400 15 Speed 300 10 200 5 100 0 500 1000 1500 2000 (lb) 2000 4000 6000 8000(N) Thrust - Continuous Duty - Intermittent Duty 400-480 V - 240 V limit


EC4-AKM52H-xxx-15-10B/ AKD (6 A)

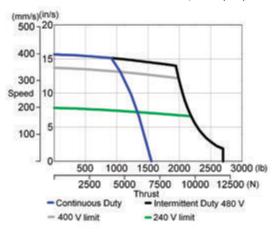

ш

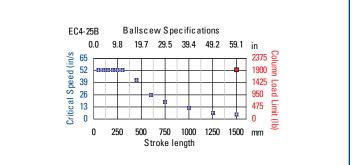
EC4 Series Perfomance Curves

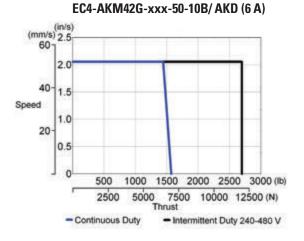

EC4 Series Servo Thrust Speed Curves



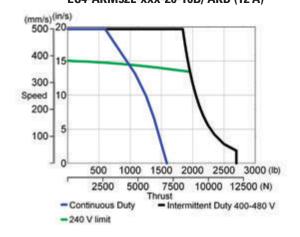
EC4-AKM52H-xxx-50-25B/ AKD (6 A)

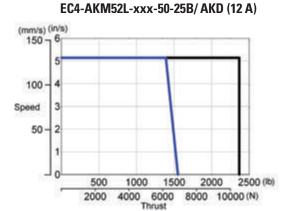



-Critical Speed and Column Loading Limits



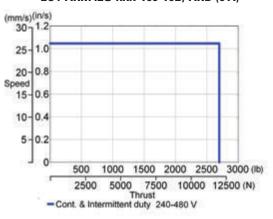
EC4-AKM52H-xxx-20-10B/ AKD (6 A)

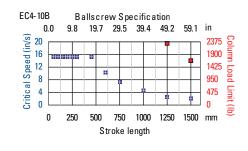


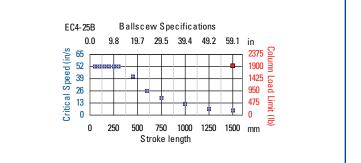


EC4 Series Servo Thrust Speed Curves

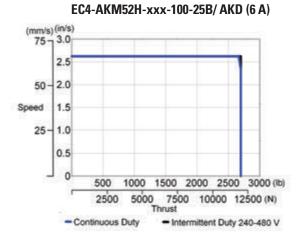
EC4-AKM52L-xxx-20-10B/ AKD (12 A)

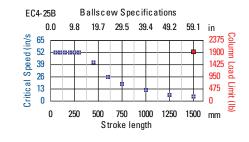



- Continuous Duty

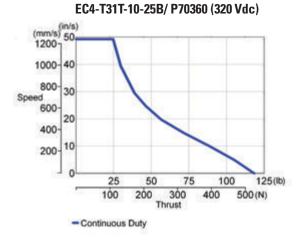

EC4-AKM42G-xxx-100-10B/AKD (6 A)

- Intermittent Duty 240-480 V

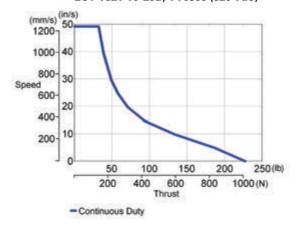



www.kollmorgen.com

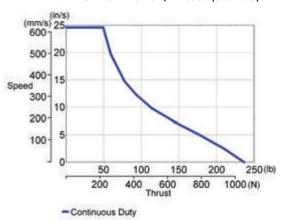
EC4 Series Perfomance Curves


EC4 Series Servo Thrust Speed Curves

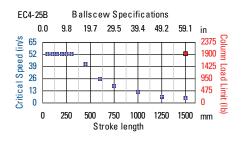
–Critical Speed and Column Loading Limits —



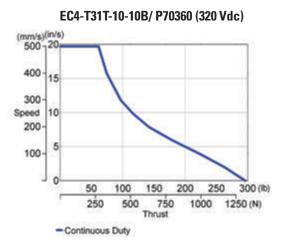
EC4 Series Stepper Thrust Speed Curves



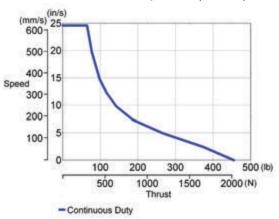
EC4-T31T-15-25B/ P70360 (320 Vdc) (in/s) 40 (mm/s) 800 130 600 Speed 20 400 10 200 0 50 100 150 200(lb) 500 Thrust 250 750(N) - Continuous Duty


EC4-T32T-10-25B/ P70360 (320 Vdc)

EC4-T31T-20-25B/ P70360 (320 Vdc)



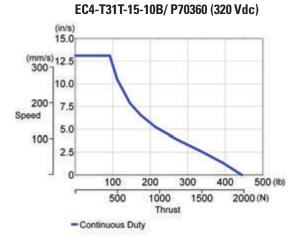
EC4 Series Perfomance Curves


EC4 Series Stepper Thrust Speed Curves

EC4-T41T-10-25B/ P70360 (320 Vdc) (mm/s) (in/s) 1200-1000-40 800 30 Speed 600 20 400 10 200-Ó 300 (lb) 50 100 200 250 150 250 750 1000 1250 (N) 500 Thrust - Continuous Duty

EC4-T32T-15-25B/ P70360 (320 Vdc) (mm/s)(in/s) 1000 40 800-30 600 Speed 20 400 10 200 0 400(lb) 100 200 300 500 1000 1500 (N) Thrust - Continuous Duty

EC4-T32T-20-25B/ P70360 (320 Vdc)



EC4-10B **Ballscrew Specification Ballscew Specifications** EC4-25B 59.1 in 0.0 19.7 29.5 39.4 49.2 9.8 59.1 in 0.0 9.8 19.7 29.5 39.4 49.2 Critical Speed (in/s) 0 7 8 7 9 0 0 2375 Oum 1900 mm 2375 Critical Speed (in/s 65 1900 Imn 52 1425 1425 Load Limit 39 Load Limit 8 950 26 475 13 \$. 0 0 0 (III) (Ib) 250 1500 mm 0 500 750 1000 1250 0 250 500 750 1000 1250 1500 mm Stroke length Stroke length

S

EC4 Series Stepper Thrust Speed Curves

(mm/s)(in/s) 1000 140 800 30 600 Speed 20

200

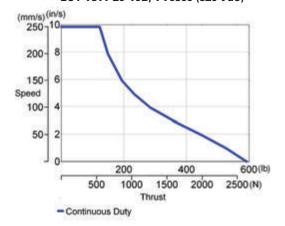
1000

Thrust

400-

10 200

0


100

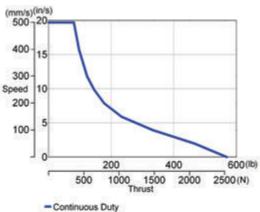
- Continuous Duty

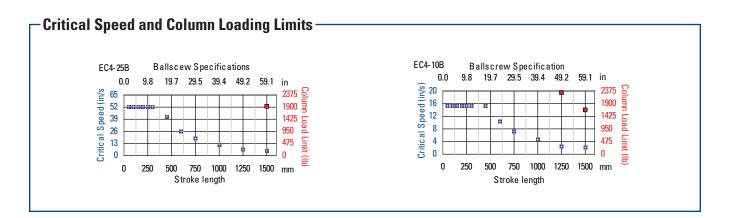
500

EC4-T41T-15-25B/ P70360 (320 Vdc)

EC4-T31T-20-10B/ P70360 (320 Vdc)

EC4-T32T-10-10B/ P70360 (320 Vdc)

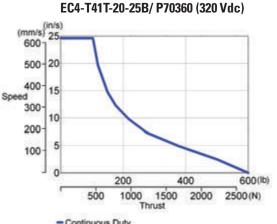

400

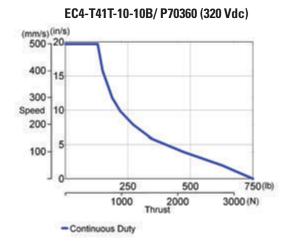

300

1500

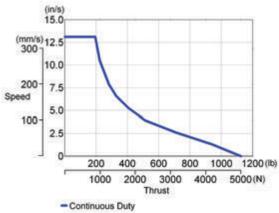
500 (lb)

2000 (N)

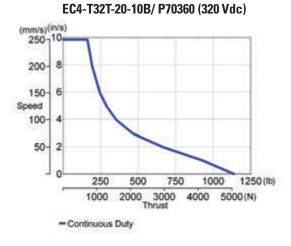


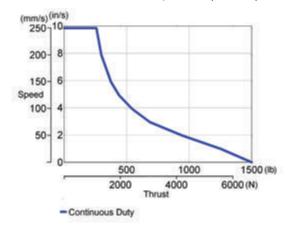

EC4 Series Perfomance Curves

EC4 Series Stepper Thrust Speed Curves

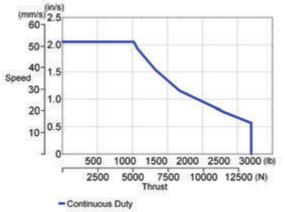


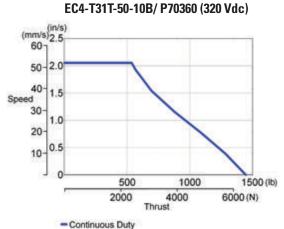
EC4-T32T-15-10B/ P70360 (320 Vdc) (in/s) 15.0 (mm/s) 12.5 300 10.0 200 7.5 Speed 5.0 100 2.5 0 1000 (lb) 200 400 600 800 2000 1000 3000 4000 (N) Thrust - Continuous Duty

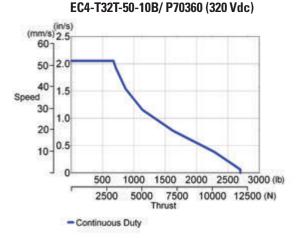


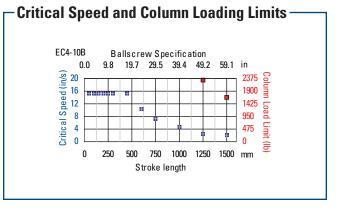

EC4-10B Ballscrew Specification EC4-25B Ballscew Specifications 0.0 9.8 19.7 29.5 39.4 49.2 59.1 in 0.0 9.8 19.7 29.5 39.4 49.2 59.1 in 2375 Column 2375 Olum 1900 m Critical Speed (in/s 65 52 1425 Load Limit 1425 39 Loa d Limit 950 26 475 13 ł. 0 0 0 (III) (III) 750 1500 mm 250 750 1000 1250 1500 0 250 500 1000 1250 0 500 mm Stroke length Stroke length

Critical Speed and Column Loading Limits

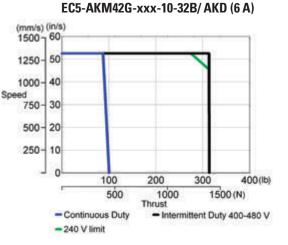

EC4 Series Stepper Thrust Speed Curves

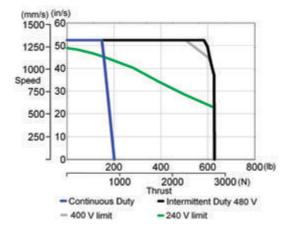


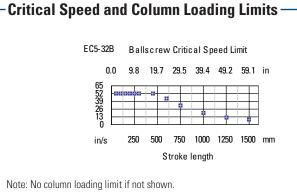

EC4-T41T-20-10B/ P70360 (320 Vdc)

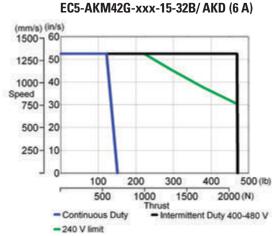


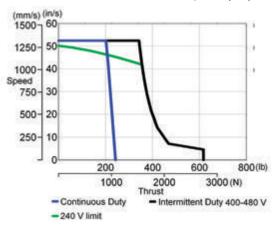
EC4-T41T-50-10B/ P70360 (320 Vdc)

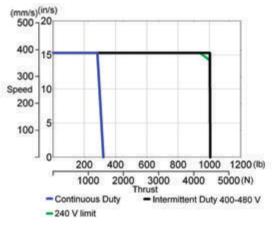




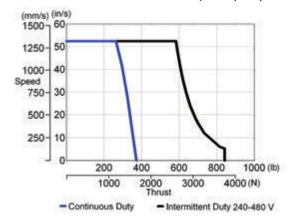

EC5 Series Perfomance Curves

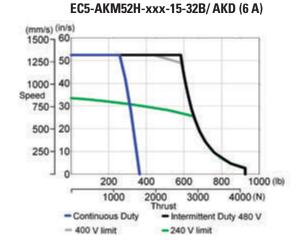

EC5 Series Servo Thrust Speed Curves

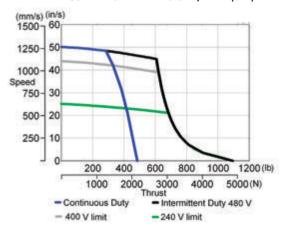

EC5-AKM42G-xxx-20-32B/ AKD (6 A)

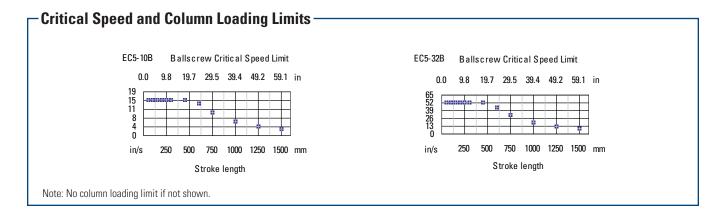

EC5-AKM52H-xxx-10-32B/ AKD (6 A)

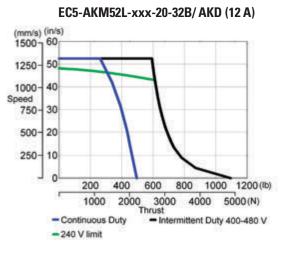
⁽mm/s) (ir 1500 - 6

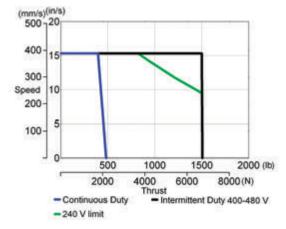

S


EC5 Series Servo Thrust Speed Curves


EC5-AKM42G-xxx-10-10B/ AKD (6 A)

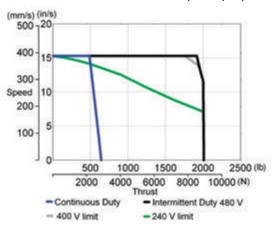

EC5-AKM52L-xxx-15-32B/ AKD (12 A)

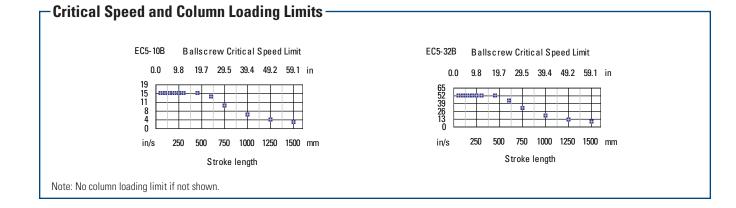

EC5-AKM52H-xxx-20-32B/AKD (6 A)



EC5 Series Perfomance Curves

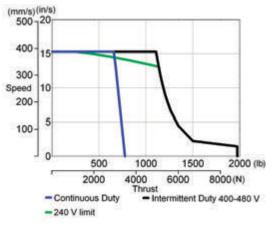
EC5 Series Servo Thrust Speed Curves

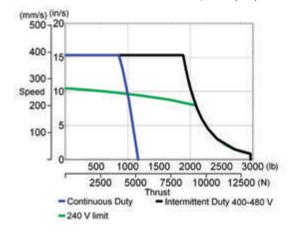

EC5-AKM42G-xxx-15-10B/ AKD (6 A)



(mm/s)(in/s) 200 - 8 150 6 Speed 100 50 2 n 2000 (lb) 500 1000 1500 2000 4000 6000 8000(N) Thrust - Continuous Duty - Intermittent Duty 240-480 V

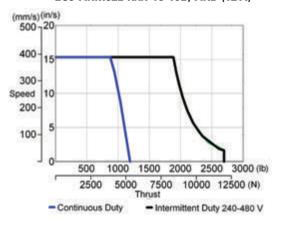
EC5-AKM42G-xxx-50-32B/AKD (6 A)

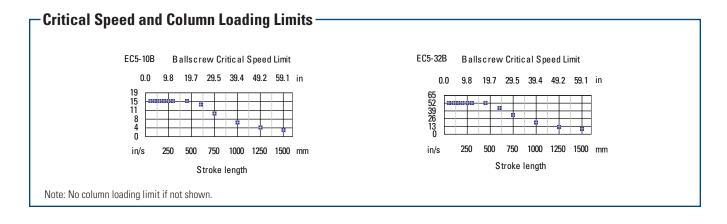

EC5-AKM42G-xxx-20-10B/ AKD (6 A)


S

EC5 Series Servo Thrust Speed Curves

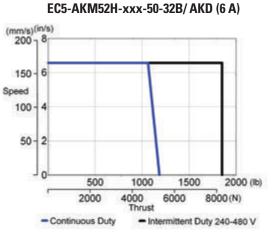
EC5-AKM52H-xxx-10-10B/ AKD (6 A)

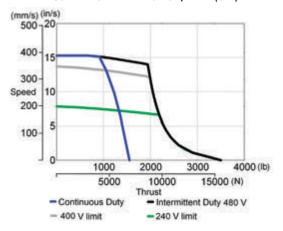

EC5-AKM52H-xxx-15-10B/ AKD (6 A)



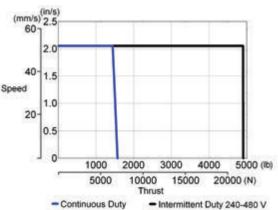
(mm/s) (in/s) 100 1 4 80 2 60-Speed 2 40-20-C 4000 (lb) 1000 2000 3000 5000 10000 15000 (N) Thrust - Continuous Duty - Intermittent Duty 240-480 V

EC5-AKM42G-xxx-100-32B/ AKD (6 A)

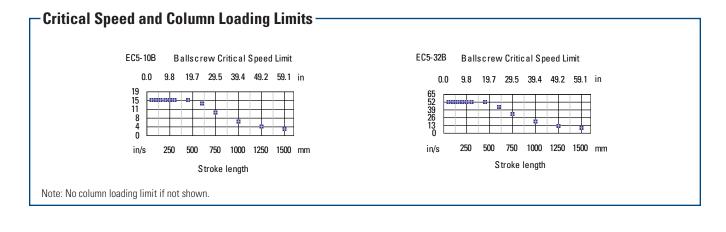

EC5-AKM52L-xxx-15-10B/ AKD (12 A)



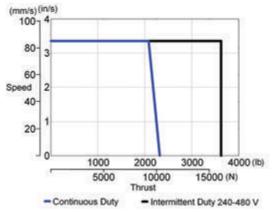
EC5 Series Perfomance Curves


EC5 Series Servo Thrust Speed Curves

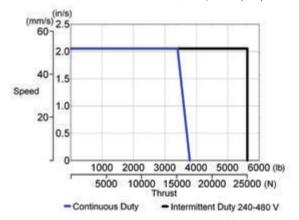
EC5-AKM52H-xxx-20-10B/ AKD (6 A)



EC5-AKM52L-xxx-20-10B/ AKD (12 A) (mm/s) (in/s) 500 20 400 15 300 10 Speed 200 5 100-C 1000 2000 3000 4000 (lb) 5000 10000 15000 (N) Thrust - Continuous Duty - Intermittent Duty 400-480 V -240 V limit

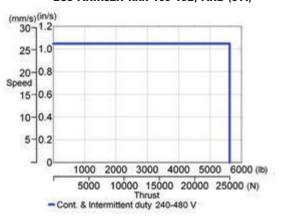

KOLLMORGEN

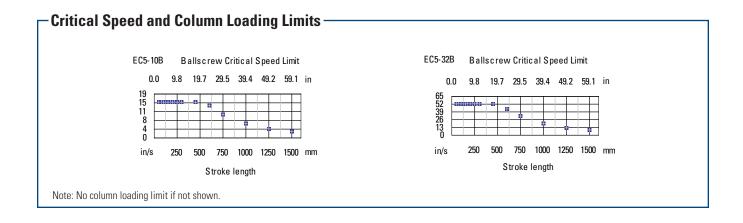
EC5-AKM42G-xxx-50-10B/ AKD (6 A)


S

EC5 Series Servo Thrust Speed Curves

EC5-AKM52H-xxx-100-32B/ AKD (6 A)

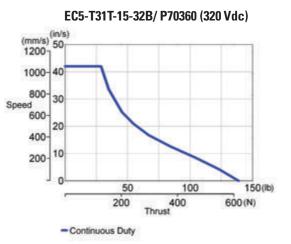

EC5-AKM52H-xxx-50-10B/ AKD (6 A)

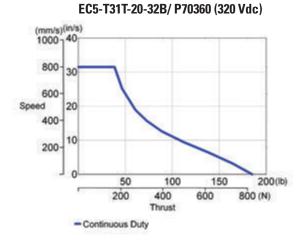


(mm/s) (in/s) 30 1.2 25-1.0 20-0.8 Speed 15-0.6 10-0.4 5-0.2 0 1000 2000 3000 4000 5000 6000 (ib) 5000 10000 15000 20000 25000 (N) Thrust - Continuous Duty - Intermittent Duty 240-480 V

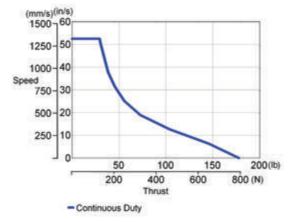
EC5-AKM42G-xxx-100-10B/ AKD (6 A)

EC5-AKM52H-xxx-100-10B/ AKD (6 A)

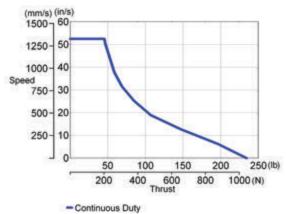


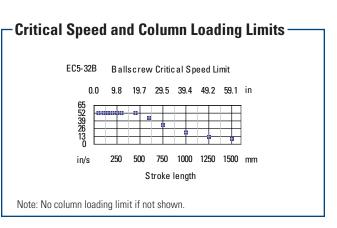


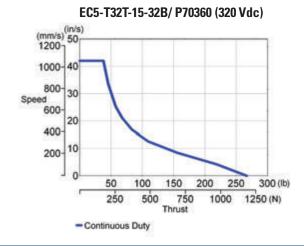
www.kollmorgen.com


EC5 Series Perfomance Curves

EC5 Series Stepper Thrust Speed Curves



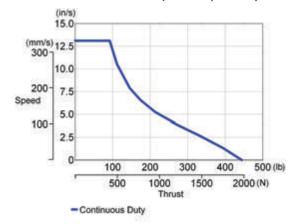



EC5-T32T-10-32B/ P70360 (320 Vdc)

EC5-T41T-10-32B/ P70360 (320 Vdc)

S

EC5 Series Stepper Thrust Speed Curves

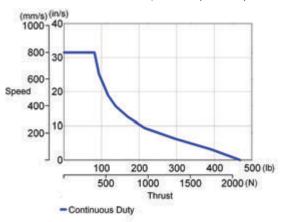


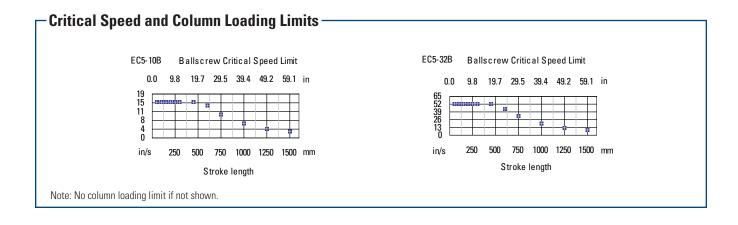
500

- Continuous Duty

EC5-T41T-15-32B/ P70360 (320 Vdc)

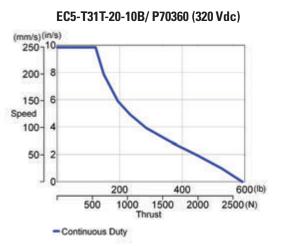
EC5-T31T-15-10B/ P70360 (320 Vdc)

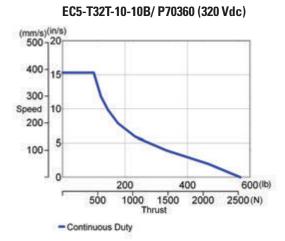


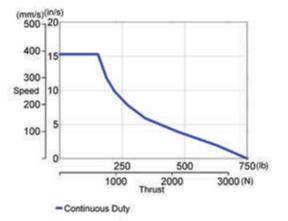

EC5-T41T-20-32B/ P70360 (320 Vdc)

1000

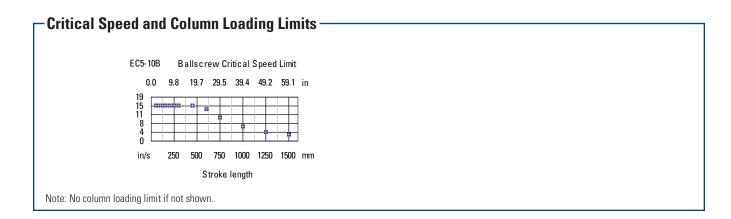
Thrust


1500 (N)

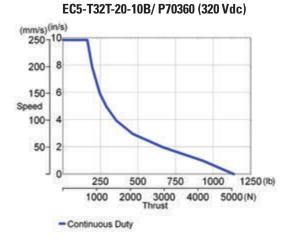



EC5 Series Perfomance Curves

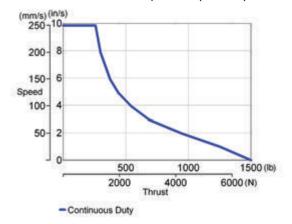
EC5 Series Stepper Thrust Speed Curves



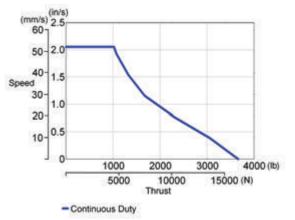
EC5-T41T-10-10B/ P70360 (320 Vdc)

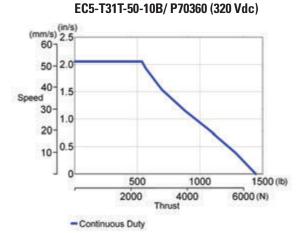

(in/s) 15.0 (mm/s)12.5 300-10.0 200 7.5 Speed 5.0 100 2.5 0 800 1000 1200 (lb) 200 400 600 3000 4000 2000 5000(N) 1000 Thrust - Continuous Duty

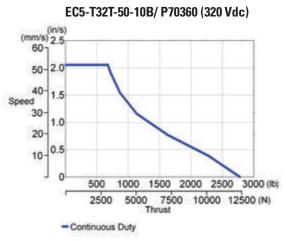
EC5-T41T-15-10B/ P70360 (320 Vdc)

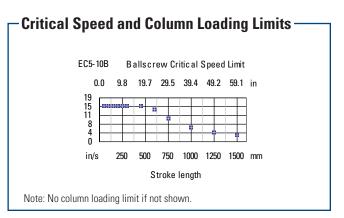


KOLLMORGEN

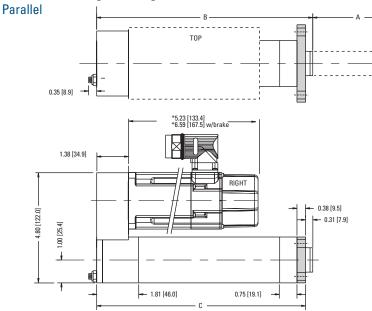

EC5 Series Stepper Thrust Speed Curves




EC5-T41T-20-10B/ P70360 (320 Vdc)



EC5-T41T-50-10B/ P70360 (320 Vdc)



N2 Series Outline Drawings

MF1 Front Rectangular Flange Mount

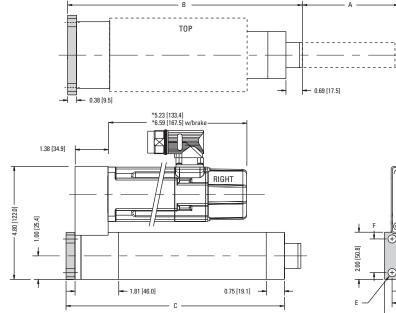
Α	Standard Stroke Lengths Available											
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0					
mm	50.8	101.6	152.4	203.2	304.8	457.2	609.6					

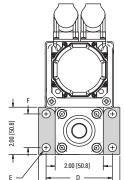
↓ F		
- -	÷ @	● ⊕
2.00 [50.8]		Ø 🕀
+	- D	
Е —/	- 3.38 [85	.7] —

1.06 [27.0]

ł

ł


	English Option	Metric Option								
	MF1 (inches)	MF1M (mm)								
D	2.75	72*								
E	0.34	9*								
F	1.43	36*								
	Meets ISO 40mm bore standard									


B	Retract Length	C	Mounting length
inch	5.37 + S	inch	5.06 + S
mm	136.4 + S	mm	128.5 + S
S = stroke			

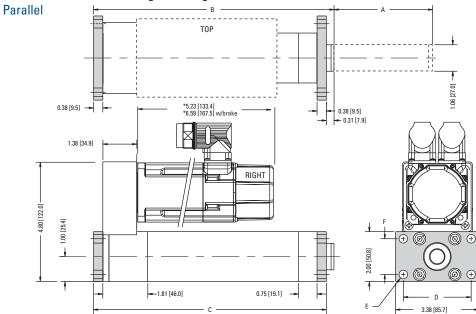
Parallel

* AKM23 with motor mounted connectors.

MF2 Rear Rectangular Flange Mount

1.06 [27.0]

Ł

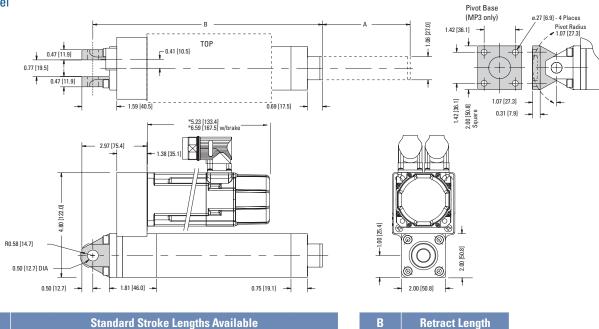

	English Option	Metric Option								
	MF2 (inches)	MF2M (mm)								
D	2.75	72*								
E	0.34	9*								
F	1.43	36*								
	* Meets ISO 40mm bore standard									

Α	Standard Stroke Lengths Available									Retract Length	C	Mounting length
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0		inch	5.75 + S	inch	5.06 + S
mm	50.8	101.6	152.4	203.2	304.8	457.2	609.6		mm	146.1 + S	mm	128.5 + S

* AKM23 with motor mounted connectors.

3.38 [85.7]

MF3 Front and Rear Rectangular Flange Mount



A		St	tandard St	roke Leng	ths Availa	В	Retract Length	C	Mounting length		
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0	inch	5.75 + S	inch	5.44 + S
mm 5	50.8	101.6	152.4	203.2	304.8	457.2	609.6	mm	146.1 + S	mm	138.2 + S

* AKM23 with motor mounted connectors.

S = stroke

Parallel

* AKM23 with motor mounted connectors.

4.0

101.6

6.0

152.4

8.0

203.2

12.0

304.8

18.0

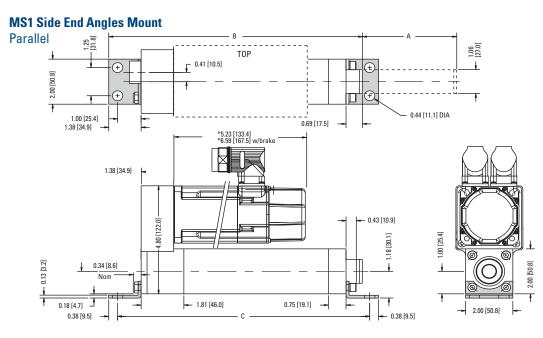
457.2

24.0

609.6

2.0

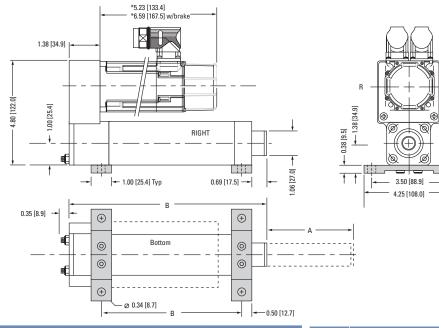
50.8


inch

mm

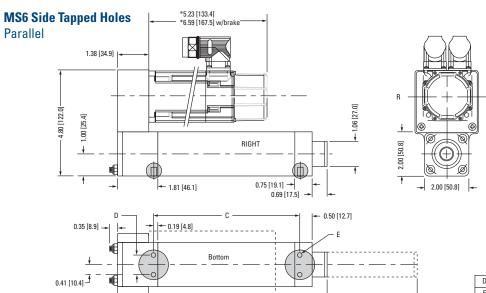
В	Retract Length
inch	6.47 + S
mm	164.4 + S
S = stroke	

www.kollmorgen.com


N2 Series Outline Drawings

Α		S	tandard St	roke Leng	ths Availa	В	Retract Length	C	Mounting length		
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0	inch	6.75 + S	inch	6.69 + S
mm	50.8	101.6	152.4	203.2	304.8	457.2	609.6	mm	171.5 + S	mm	169.9 + S
* AKM23 wi	th motor mo	unted connect	tors.			S = stroke					

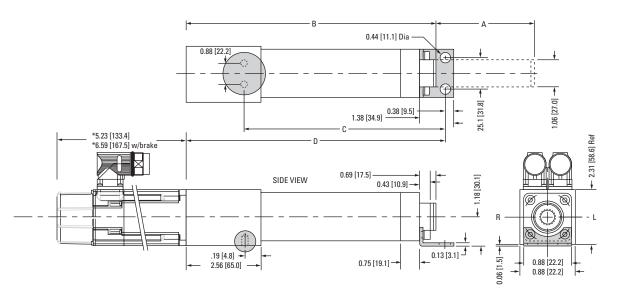
MS2 Side Foot Mount


Parallel

Α		S	tandard S	troke Leng	ths Availa	ble	В	Retract Length	C	Mounting length	
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0	inch	5.37 + S	inch	2.56 + S
mm	50.8	101.6	152.4	203.2	304.8	457.2	609.6	mm	136.4 + S	mm	65.0 + S
	50.8	101.6	152.4					-			

* AKM23 with motor mounted connectors.

S = stroke



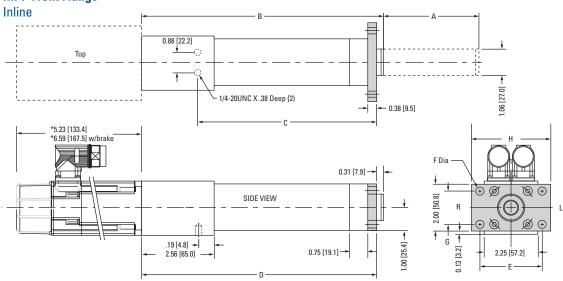
	English Option	Metric Option
	MS6E (inches)	MS6M (mm)
D	0.88	16
E	1/4-20 UNC x 0.38 deep	M6 x 1 x 8 deep

Α		S	tandard St	troke Leng	ths Availa	ble	В	Retract Length	C	Mounting length	
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0	inch	5.37 + S	inch	2.56 + S
mm	50.8	101.6	152.4	203.2	304.8	457.2	609.6	mm	136.4 + S	mm	65.0 + S
* AKM23 w	ith motor mo	unted connect	ors.			S = stroke					

MS1 Side End Angles

Inline

Α		Standard Stroke Lengths Available						В	Retract Length	C	Mounting length
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0	inch	6.12 + S	inch	4.06 + S
mm	50.8	101.6	152.4	203.2	304.8	457.2	609.6	mm	155.4 + S	mm	103.1+ S


* AKM23 with motor mounted connectors.

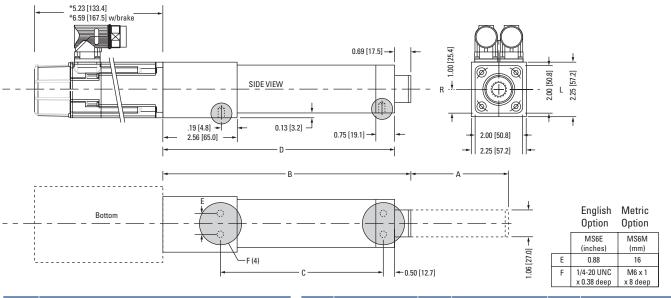
S = stroke

www.kollmorgen.com

N2 Series Outline Drawings

MF1 Front Flange

	English Option	Metric Option
	MF1	MF1M
	(inches)	(mm)
Е	2.75	72*
F	0.34	9*
G	1.43	36*
	3.38	85.7*


*Meets ISO 40mm bore standard

Α		Stand	ard Stro	oke Len	gths Ava	ilable		В	Retract Length	C	Mounting length	D	Mounting length
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0	inch	6.12 + S	inch	3.44 + S	inch	5.81 + S
mm	50.8	101.6	152.4	203.2	304.8	457.2	609.6	mm	155.4 + S	mm	87.4 + S	mm	147.5 + S
* AKM23 \	AKM23 with motor mounted connectors.							S = stroke	9				

AKM23 with motor mounted connection of the second second

MS6 Side Tapped Holes

Inline

A		Standa	ard Stro	ke Len	gths Ava	ilable				
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0	1		
mm	50.8	101.6	152.4	203.2	304.8	457.2	609.6			
* AKM23 v	s with motor mounted connectors									

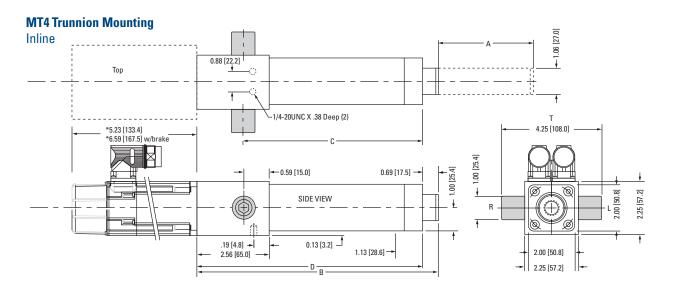
	В	Retract Length	C	Mounting length	D	Mounting length
0	inch	6.12 + S	inch	2.56 + S	inch	5.43 + S
.6	mm	155.4 + S	mm	65.0 + S	mm	137.8 + S
	S = stroke)				

Z

2

S

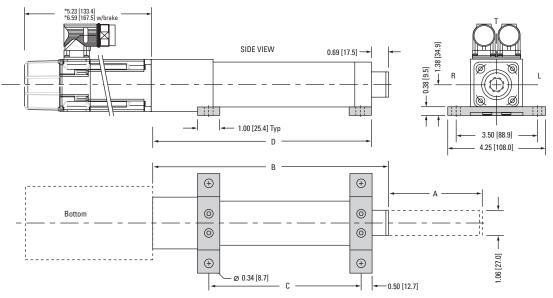
Π RI


E S

OUTLINE

RAWIN

G


S

Α		Standa	ard Stro	ke Lenç	yths Ava	ilable		В	Retract Length	C	Mounting length	D	Mounting length
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0	inch	6.12 + S	inch	3.47 + S	inch	5.43 + S
mm	50.8	101.6	152.4	203.2	304.8	457.2	609.6	mm	155.4 + S	mm	88.1 + S	mm	137.8 + S
* AKM23 v	XKM23 with motor mounted connectors.							S = stroke	е				

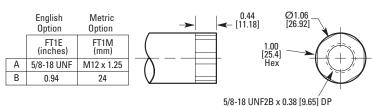
MS2 Side Foot

Inline

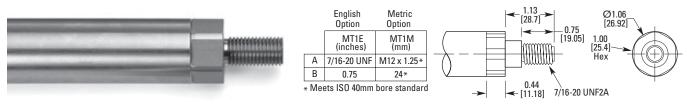
Α		Stand	ard Stro	ke Len	gths Ava	ilable	
inch	2.0	4.0	6.0	8.0	12.0	18.0	24.0
mm	50.8	101.6	152.4	203.2	304.8	457.2	609.6

	В	Retract Length	C	Mounting length	D	Mounting length
0	inch	6.12 + S	inch	2.56 + S	inch	5.43 + S
.6	mm	155.4 + S	mm	65.0 + S	mm	137.8 + S
	S = stroke					

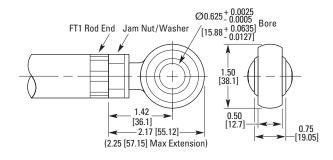
* AKM23 with motor mounted connectors.


www.kollmorgen.com

N2 Series Outline Drawings

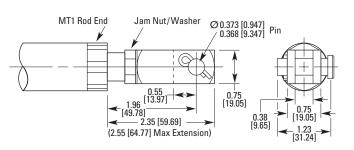

N2 Series Rod End Dimensions

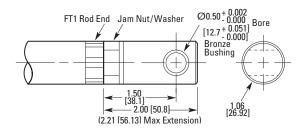
FT1 Female Threads Dimensions in [mm]



MT1 Male Threads Dimensions in [mm]

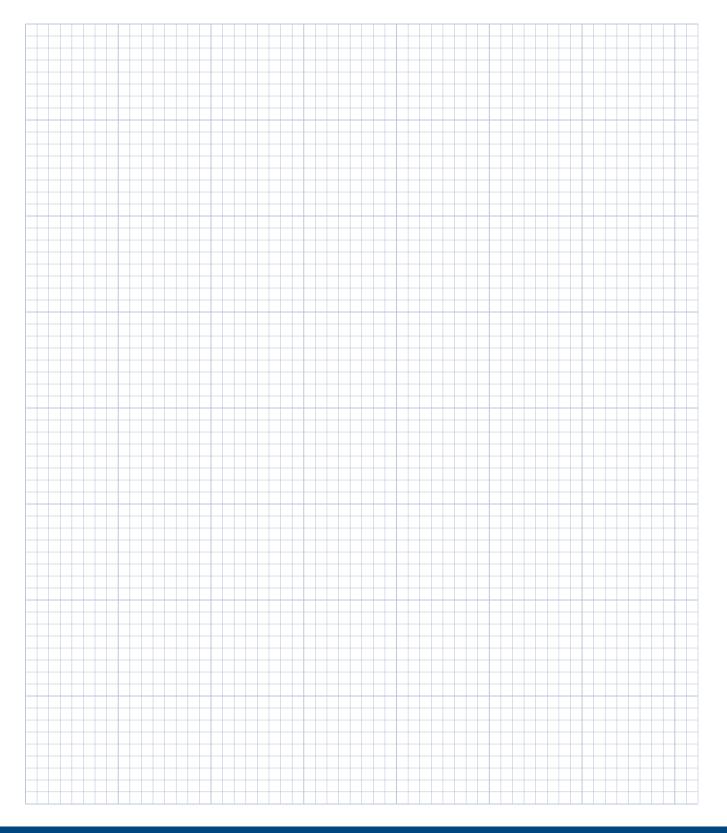
FS2 Spherical Joint Dimensions in [mm]





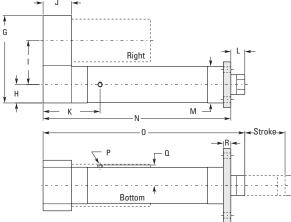
FC2 Clevis with Pin Dimensions in [mm]

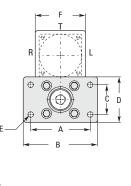
FE2 with Bronze Bushing Dimensions in [mm]



KOLLMORGEN

S


Notes

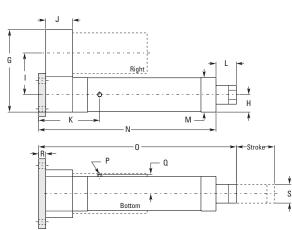


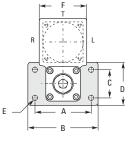
EC Series Outline Drawings

MF1 Front Flange Parallel

	ge dimensions in nce with ISO 6431 for:
Туре	Bore Size
EC1	30 mm
EC2	50 mm
EC3	63 mm
EC4	80 mm
EC5	100 mm

S

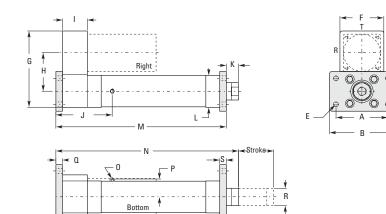

	А	В	С	D	E	F	G	Н	1	J	К
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC1	60.0 (2.36)	74.0 (2.91)	28.0 (1.10)	40.0 (1.57)	6.60 (0.26)	48.0 (1.89)	82.6 (3.25)	19.0 (0.75)	41.8 (1.65)	31.3 (1.23)	-
EC2	90.0 (3.54)	114.3 (4.50)	45.0 (1.77)	63.5 (2.50)	9.0 (0.35)	79.8 (3.14)	144.0 (5.7)	28.4 (1.12)	74.7 (2.94)	41.7 (1.64)	88.6 (3.49)
EC3	100.0 (3.94)	127.0 (5.00)	50.0 (1.97)	69.1 (2.72)	9.0 (0.35)	95.5 (3.76)	169.7 (6.7)	34.8 (1.37)	*87.6/89.7 (*3.45/3.53)	49.3 (1.94)	94.2 (3.71)
EC4 (-MF1E)	127.0 (5.00)	152.4 (6.00)	69.9 (2.75)	96.3 (3.79)	13.5 (0.53)	127.0 (5.00)	221.0 (8.7)	46.1 (1.81)	111.1 (4.37)	71.9 (2.83)	150.9 (5.94)
EC5	150.0 (5.91)	186.9 (7.36)	75.0 (2.95)	114.3 (4.50)	14.2 (0.56)	127.0 (5.00)	221.0 (8.7)	46.1 (1.81)	111.1 (4.37)	71.9 (2.83)	150.9 (5.94)


	L	М	N Cyl Length	O Retract length	P Breathe	r port Hex	Q	R	S
	mm (in)	mm (in)	mm (in)	mm (in)	type	mm (in)	mm (in)	mm (in)	mm (in)
EC1	10.2 (0.40)	38.1 (1.50)	113.8 + S (4.48 + S)	124.0 + S (4.88 + S)	-	-	-	10.0 (0.39)	22.2 (0.88)
EC2	25.0 (0.98)	56.9 (2.24)	218.5 + S (8.6 + S)	243.4 + S (9.58 + S)	1/8 NPT	11.1 (0.44)	34.8 (1.37)	9.5 (0.37)	28.0 (1.10)
EC3	25.0 (0.98)	69.6 (2.74)	246.3 + S (9.7 + S)	271.1 + S (10.67 + S)	1/8 NPT	11.1 (0.44)	41.1 (1.62)	12.7 (0.50)	35.0 (1.38)
EC4 (-MF1E)	41.4 (1.63)	92.2 (3.63)	365.8 + S (14.4 + S)	406.9 + S (16.02 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	12.7 (0.50)	50.0 (1.97)
EC5	35.0 (1.38)	92.2 (3.63)	365.8 + S (14.4 + S)	406.9 + S (16.02 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	19.1 (0.75)	50.0 (1.97)

* AKM23 / AKM42 dimension

MF2 Rear Flange Parallel

Flange dimensions in accordance with ISO 6431 for:						
Туре	Bore Size					
EC2	50 mm					
EC3	63 mm					
EC4	80 mm					
EC5	100 mm					


	А	В	С	D	E	F	G	Н	1	J	К
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC2	90.0 (3.54)	114.3 (4.50)	45.0 (1.77)	63.5 (2.50)	9.0 (0.35)	79.8 (3.14)	147.3 (5.80)	28.45 (1.12)	74.7 (2.94)	41.7 (1.64)	98.3 (3.87)
EC3	100.0 (3.94)	127.0 (5.00)	50.0 (1.97)	69.1 (2.72)	9.0 (0.35)	95.5 (3.76)	169.7 (6.68)	34.8 (1.37)	*87.6/89.7 (*3.45/3.53)	49.3 (1.94)	106.9 (4.21)
EC4 (-MF1E)	127.0 (5.00)	152.4 (6.00)	69.9 (2.75)	96.3 (3.79)	13.5 (0.53)	127.0 (5.00)	221.0 (8.70)	46.1 (1.81)	111.1 (4.37)	71.9 (2.83)	163.5 (6.44)
EC5	150.0 (5.91)	186.9 (7.36)	75.0 (2.95)	114.3 (4.50)	14.2 (0.56)	127.0 (5.00)	221.0 (8.70)	46.1 (1.81)	111.1 (4.37)	71.9 (2.83)	169.9 (6.69)

	L	М	N Cyl Length	O Retract length	P Breathe	r port Hex	Q	R	S
	mm (in)	mm (in)	mm (in)	mm (in)	type	mm (in)	mm (in)	mm (in)	mm (in)
EC2	34.5 (1.36)	56.9 (2.24)	218.5 + S (8.6 + S)	253.0 + S (9.96 + S)	1/8 NPT	11.1 (0.44)	34.8 (1.37)	9.5 (0.37)	28.0 (1.10)
EC3	37.7 (1.48)	69.6 (2.74)	246.3 + S (9.7 + S)	284.3 + S (11.19 + S)	1/8 NPT	11.1 (0.44)	41.1 (1.62)	12.7 (0.50)	35.0 (1.38)
EC4 (-MF1E)	54.1 (2.13)	92.2 (3.63)	365.8 + S (14.4 + S)	419.6 + S (16.52 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	12.7 (0.50)	50.0 (1.97)
EC5	54.1 (2.13)	92.2 (3.63)	365.8 + S (14.4 + S)	419.6 + S (16.52 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	19.1 (0.75)	50.0 (1.97)

Ī

MF3 Front and Rear Flanges Parallel

Flange dimensions in accordance with ISO 6431 for:									
Туре	Bore Size								
EC2	50 mm								
EC3	63 mm								
EC4	80 mm								
EC5	100 mm								

	А	В	С	D	E	F	G	Н	1	J	К
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC2	90.0 (3.54)	114.3 (4.50)	45.0 (1.77)	63.5 (2.50)	9.0 (0.35)	79.8 (3.14)	147.3 (5.80)	74.7 (2.94)	41.7 (1.64)	98.3 (3.87)	25.0 (0.98)
EC3	100.0 (3.94)	127.0 (5.00)	50.0 (1.97)	69.1 (2.72)	9.0 (0.35)	95.5 (3.76)	169.7 (6.68)	*87.6/89.7 (*3.45/3.53)	49.3 (1.94)	106.9 (4.21)	25.0 (0.98)
EC4 (-MF3E)	127.0 (5.00)	152.4 (6.00)	69.9 (2.75)	96.3 (3.79)	13.5 (0.53)	127.0 (5.00)	221.0 (8.70)	111.1 (4.37)	71.9 (2.83)	163.5 (6.44)	41.4 (1.63)
EC5	150.0 (5.91)	186.9 (7.36)	75.0 (2.95)	114.3 (4.50)	14.2 (0.56)	127.0 (5.00)	221.0 (8.70)	111.1 (4.37)	71.9 (2.83)	169.9 (6.69)	35.1 (1.38)

	L	M Cyl Length	N Retract length	0 Breathe	r port Hex	Р	Q	R	S
	mm (in)	mm (in)	mm (in)	type	mm (in)				
EC2	56.9 (2.24)	228.1+ S (8.98 + S)	253.0 + S (9.96 + S)	1/8 NPT	11.1 (0.44)	34.8 (1.37)	9.5 (0.37)	28.0 (1.10)	9.5 (0.37)
EC3	69.6 (2.74)	259.3 + S (10.21 + S)	284.3 + S (11.19 + S)	1/8 NPT	11.1 (0.44)	41.1 (1.62)	12.7 (0.50)	35.0 (1.38)	12.7 (0.50)
EC4 (-MF3E)	92.2 (3.63)	387.5 + S (14.9 + S)	419.6 + S (16.52 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	12.7 (0.50)	50.0 (1.97)	12.7 (0.50)
EC5	92.2 (3.63)	378.5 + S (14.9 + S)	419.6 + S (16.52 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	19.1 (0.75)	50.0 (1.97)	19.1 (0.75)

* AKM23 / AKM42 dimension

MP3 Clevis Mount with Pivot Base and Pin Parallel

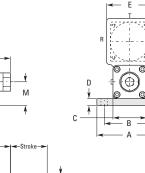
Flange dimensions in accordance with ISO 6431 for:								
Туре	Bore Size							
EC1	30 mm							
EC2	50 mm							
EC3	63 mm							
EC4	80 mm							
EC5	100 mm							

			TIVOT BROE
→ < M	R	Stroke->	(MP3 only)
	Тор		
	Right Right		
		11 1	1 1/

80 MAX Pivot Angle

PIVOT BASE

(EC1 only)


	А	В	С	D	Е	F	G	Н	1	J	K	L	М
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC1	43.7 (1.72)	-	418 (1.65)	82.6 (3.25)	48.0 (1.89)	5.5 (0.22)	48.0 (1.89)	46.0 (1.81)	8.0 (0.31)	30.0 (1.18)	-	19.9/20.1 (0.782/0.792)	8.0 (0.31)
EC2	56.9 (2.24)	34.8 (1.37)	74.7 (2.94)	144.0 (5.67)	79.8 (3.14)	5.4 (0.21)	61.7 (2.43)	56.9 (2.24)	9.5 (0.37)	25.4 (1.00)	57.0 (2.24)	32.0/32.6 (1.26/1.28)	12.7 (0.50)
EC3	69.6 (2.74)	41.1 (1.62)	87.6/89.7* (3.45/3.53*)	169.7 (6.68)	95.5 (3.76)	6.5 (0.26)	76.0 (2.99)	69.3 (2.73)	9.5 (0.37)	31.5 (1.24)	69.3 (2.73)	40.0/40.6 (1.58/1.60)	15.2 (0.60)
EC4	92.2 (3.63)	52.8 (2.08)	111.1 (4.37)	221.0 (8.70)	127.0 (5.00)	11.1 (0.44)	98.8 (3.89)	91.4 (3.60)	15.7 (0.62)	44.4 (1.75)	91.4 (3.60)	60.0/60.5 (2.36/2.38)	19.6 (0.77)
EC5	92.2 (3.63)	52.8 (2.08)	111.1 (4.37)	221.0 (8.70)	127.0 (5.00)	11.1 (0.44)	98.8 (3.89)	91.4 (3.60)	15.7 (0.62)	44.4 (1.75)	91.4 (3.60)	60.0/60.5 (2.36/2.38)	19.6 (0.77)

	N mm (in)	0 mm (in)	P mm (in)	Q Cyl Length mm (in)	R Retract length mm (in)	S Breather type	port Hex mm (in)	T mm (in)	U mm (in)	V mm (in)	W mm (in)
EC1	17.2 (0.68)	9.86/10.1 (0.388/0.398)	22.2 (0.88)	109.9 + S (4.33 + S)	147.5 + S (5.81 + S)	-	-	-	31.3 (1.23)	20.2 (0.80)	19.1 (0.75)
EC2	15.7 (0.62)	11.9/12.0 (0.470/0.472)	28.0 (1.10)	218.5 + S (8.6 + S)	267.5 + S (10.5)	1/8 NPT	11.1 (0.44)	98.3 (3.87)	41.7 (1.64)	34.5 (1.36)	28.5 (1.12)
EC3	21.8 (0.86)	15.9/16.0 (0.628/0.630)	35.0 (1.38)	242.7 + S (9.55 + S)	302.6 + S (11.91 + S)	1/8 NPT	11.1 (0.44)	103.9 (4.09)	49.3 (1.94)	37.7 (1.48)	34.8 (1.37)
EC4	28.7 (1.13)	19.9/20.0 (0.785/0.787)	50.0 (1.97)	368.3 + S (14.5 + S)	451.4 + S (17.77 + S)	1/4 NPT	14.0 (0.55)	166.6 (6.56)	71.9 (2.83)	54 (2.13)	46.1 (1.81)
EC5	28.7 (1.13)	19.9/20.0 (0.785/0.787)	50.0 (1.97)	368.3 + S (14.5 + S)	451.4 + S (17.77 + S)	1/4 NPT	14.0 (0.55)	166.6 (6.56)	71.9 (2.83)	54 (2.13)	46.1 (1.81)

* AKM23 / AKM42 dimension

www.kollmorgen.com

EC Series Outline Drawings *

R

----- U

						-	R →	⊣ ⊸⊤			
	А	В	С	D	E	F	G	Н		J	К
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC1	78.0 (3.07)	62.0 (2.44)	43.7 (1.72)	8.0 (0.31)	48.0 (1.89)	82.6 (3.25)	41.8 (1.65)	31.3 (1.23)	-	20.0 (0.79)	20.0 (0.79)
EC2	114.3 (4.50)	85.0 (3.35)	56.9 (2.24)	9.5 (0.37)	79.8 (3.14)	144.0 (5.67)	74.7 (2.94)	41.7 (1.64)	88.6 (3.49)	22.1 (0.87)	22.1 (0.87)
EC3	127.0 (5.00)	100.0 (3.94)	69.6 (2.74)	12.7 (0.50)	95.5 (3.76)	169.7 (6.68)	87.6/89.7 * (3.45/3.53 *)	49.3 (1.94)	94.2 (3.71)	25.0 (0.98)	25.0 (0.98)
EC4	181.1 (7.13)	140.0 (5.51)	92.2 (3.63)	19.1 (0.75)	127.0 (5.00)	221.0 (8.70)	111.1 (4.37)	71.9 (2.83)	150.9 (5.94)	38.1 (1.50)	38.1 (1.50)
EC5	181.1 (7.13)	140.0 (5.51)	92.2 (3.63)	19.1 (0.75)	127.0 (5.00)	221.0 (8.70)	111.1 (4.37)	71.9 (2.83)	150.9 (5.94)	38.1 (1.50)	38.1 (1.50)

Ф

- J

I.

Н

G

¥

_ . _

Right

0

- P \oplus

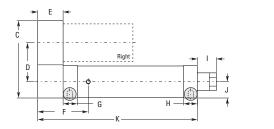
٥

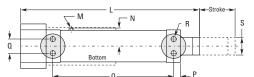
Ā Bottom

 \oplus

₽

S


К-


	L	М	N Cyl Length	O Retract length	P Breathe	r port Hex	Q	R	S	Т	U
	mm (in)	mm (in)	mm (in)	mm (in)	type	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC1	20.5 (0.81)	27.1 (1.06)	103.5 + S (4.07 + S)	124.0 + S (4.88 + S)	-	-	-	65.6 + S (2.58 + S)	6.6 (0.26)	10.0 (0.39)	22.2 (0.88)
EC2	34.5 (1.36)	38.1 (1.50)	208.8 + S (8.22 + S)	243.4 + S (9.58 + S)	1/8 NPT	11.1 (0.44)	34.8 (1.37)	144.8 + S (5.7 + S)	9.0 (0.35)	11.0 (0.43)	28.0 (1.10)
EC3	37.7 (1.48)	47.5 (1.87)	233.4 + S (9.19 + S)	271.1+ S (10.67 + S)	1/8 NPT	11.1 (0.44)	41.1 (1.62)	158.8 + S (6.25 + S)	11.0 (0.43)	12.5 (0.49)	35.0 (1.38)
EC4	54.0 (2.13)	65.3 (2.57)	353.1 + S (13.9 + S)	406.9+ S (16.02 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	242.6 + S (9.55 + S)	18.0 (0.71)	19.1 (0.75)	50.0 (1.97)
EC5	54.0 (2.13)	65.3 (2.57)	353.1 + S (13.9 + S)	406.9+ S (16.02 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	242.6 + S (9.55 + S)	18.0 (0.71)	19.1 (0.75)	50.0 (1.97)

* AKM23 / AKM42 dimension

MS6 Side Tapped Holes Parallel

Flange dimensions in accordance with ISO 6431 for:									
Type Bore Size									
EC1	30 mm								
EC2	50 mm								
EC3	63 mm								
EC4	80 mm								
EC5	100 mm								

	А	В	С	D	Е	F	G	Н	1	J	K Cyl Length
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC1	43.7 (1.72)	48.0 (1.89)	82.6 (3.25)	41.8 (1.65)	31.3 (1.23)	-	10.5 (0.41)	19.2 (0.76)	20.2 (0.80)	19.1 (0.75)	103.5 + S (4.07 + S)
EC2	56.9 (2.24)	79.8 (3.14)	144.0 (5.67)	74.7 (2.94)	41.7 (1.64)	88.6 (3.49)	22.1 (0.87)	22.1 (0.87)	34.5 (1.36)	28.5 (1.12)	208.8 + S (8.22 + S)
EC3	69.6 (2.74)	95.5 (3.76)	169.7 (6.68)	87.6/89.7 * (3.45/3.53 *)	49.3 (1.94)	94.2 (3.71)	25.1 (0.99)	25.1 (0.99)	37.7 (1.48)	34.8 (1.37)	233.4 + S (9.19 + S)
EC4	92.2 (3.63)	127.0 (5.00)	221.0 (8.70)	111.1 (4.37)	71.9 (2.83)	150.9 (5.94)	40.0 (1.57)	40.0 (1.57)	54.0 (2.13)	46.1 (1.81)	353.1 + S (13.9 + S)
EC5	92.2 (3.63)	127.0 (5.00)	221.0 (8.70)	111.1 (4.37)	71.9 (2.83)	150.9 (5.94)	40.0 (1.57)	40.0 (1.57)	54.0 (2.13)	46.1 (1.81)	353.1 + S (13.9 + S)

	L Retract length	M Breathe	M Breather port Hex		M Breather port Hex N		O Mounting Length	Р	Q	R (MS6E)	R (MS6M)	S
	mm (in)	type	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	Thread	Thread	mm (in)		
EC1	124.0 + S (4.88 + S)	-	-	-	65.7 + S (2.59 + S)	9.94 (0.39)	16.0 (0.63)	-	M6 x 1-6H x 6.8 mm Dp	22.2 (0.88)		
EC2	243.4 + S (9.58 + S)	1/8 NPT	11.1 (0.44)	34.8 (1.37)	144.8 + S (5.7 + S)	11.0 (0.43)	25.0 (0.98)	5/16-18 UNC-2B x 0.33 Dp	M8 x 1.25-6H x 8.4 mm Dp	28.0 (1.10)		
EC3	271.1 + S (10.67 + S)	1/8 NPT	11.1 (0.44)	41.1 (1.62)	158.8 + S (6.25 + S)	12.5 (0.49)	30.0 (1.18)	3/8-16 UNC-2B x 0.40 Dp	M10 x 1.50-6H x 10.2 mm Dp	35.0 (1.38)		
EC4	406.9 + S (16.02 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	242.6 + S (9.55 + S)	19.1 (0.75)	40.6 (1.60)	5/8-18 UNF-2B x 0.55 Dp	M16 x 2-6H x 14 mm Dp	50.0 (1.97)		
EC5	406.9 + S (16.02 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	242.6 + S (9.55 + S)	19.1 (0.75)	40.6 (1.60)	5/8-18 UNF-2B x 0.55 Dp	M16 x 2-6H x 14 mm Dp	50.0 (1.97)		

* AKM23 / AKM42 dimension

MS2 Side Lugs

Flange dimensions in

accordance with ISO 6431 for:

Bore Size

30 mm

50 mm

63 mm

80 mm

100 mm

Parallel

Туре

EC1

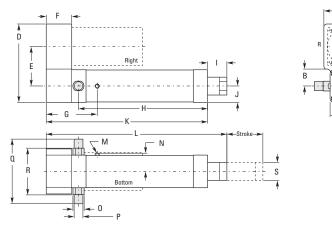
EC2

EC3

EC4

EC5

ш С

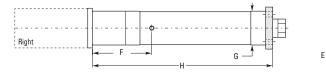

S

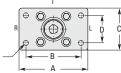
ш

RIES

MT4 Trunnion Parallel

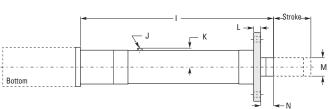
Flange dimensions in accordance with ISO 6431 for:							
Bore Size							
EC2 50 mm							
63 mm							
80 mm							
EC5 100 mm							


	А	В	С	D	E	F	G	H Mounting Length	1	J
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC2	56.9 (2.24)	28.5 (1.12)	79.8 (3.14)	144.0 (5.67)	74.7 (2.94)	41.7 (1.64)	88.6 (3.49)	155.8 + S (6.13 + S)	34.5 (1.36)	28.5 (1.12)
EC3	69.6 (2.74)	38.6 (1.52)	95.5 (3.76)	169.7 (6.68)	87.6/89.7* (3.45/3.53 *)	49.3 (1.94)	94.2 (3.71)	171.2 + S (6.74 + S)	37.7 (1.48)	34.8 (1.37)
EC4	92.2 (3.63)	48.0 (5.94)	127.0 (5.00)	221.0 (8.70)	111.1 (4.37)	71.9 (2.83)	150.9 (5.94)	261.6 + S (10.30 + S)	54.0 (2.13)	46.1 (1.81)
EC5	92.2 (3.63)	48.0 (1.89)	127.0 (5.00)	221.0 (8.70)	111.1 (4.37)	71.9 (2.83)	150.9 (5.94)	261.6 + S (10.30 + S)	54.0 (2.13)	46.1 (1.81)


	K Cyl Length	L Retract length	M Breather port Hex		Ν	0	Р	Q	R	S
	mm (in)	mm (in)	type	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC2	208.8+ S (8.22 + S)	243.4 + S (9.58 + S)	1/8 NPT	11.1 (0.44)	34.8 (1.37)	19.1 (0.75)	15.9/16.0 (0.627/0.629)	106.9 (4.21)	75.0 (2.95)	28.0 (1.10)
EC3	233.4+ S (9.19 + S)	271.1 + S (10.67 + S)	1/8 NPT	11.1 (0.44)	41.1 (1.62)	25.0 (0.98)	19.9/20.0 (0.784/0.786)	129.6 (5.10)	90.0 (3.54)	35.0 (1.38)
EC4	353.1 + S (13.9 + S)	406.9 + S (16.02 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	31.8 (1.60)	24.9/25.0 (0.981/0.983)	181.6 (1.60)	131.8 (5.19)	50.0 (1.97)
EC5	353.1 + S (13.9 + S)	406.9 + S (16.02 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	31.8 (1.25)	24.9/25.0 (0.981/0.983)	181.6 (7.15)	131.8 (5.19)	50.0 (1.97)

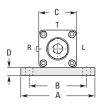
* AKM23 / AKM42 dimension

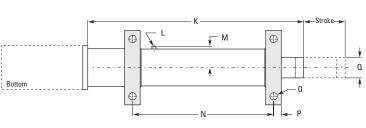
MT1 Front Flange Inline


Flange dimensions in accordance with ISO 6431 for:								
Type Bore Size								
EC1	30 mm							
EC2	50 mm							
EC3	63 mm							
EC4	80 mm							
EC5	100 mm							

(⊕

. . .



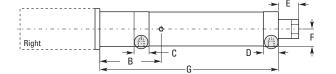

	A mm (in)	B mm (in)	C mm (in)	D mm (in)	E mm (in)	F mm (in)	G mm (in)	H Cyl Length mm (in)
EC1	74.0 (2.91)	60.0 (2.36)	40.0 (1.57)	28.0 (1.10)	6.6 (0.26)	-	38.1 (1.50)	111.7 + S (4.40 + S)
EC2	114.3 (4.50)	90.0 (3.54)	63.5 (2.50)	45.0 (1.77)	9.0 (0.35)	100.7 (3.96)	56.9 (2.24)	230.5 + S (9.08 + S)
EC3	127.0 (5.00)	100.0 (3.94)	69.1 (2.72)	50.0 (1.97)	9.0 (0.35)	121.3 (4.78)	69.6 (2.74)	273.4 + S (10.76 + S)
EC4	152.4 (6.00)	127.0 (5.00)	96.3 (3.79)	69.85 (2.75)	13.5 (0.53)	169.2 (6.66)	92.2 (3.63)	390.3 + S (15.37 + S)
EC5	186.9 (7.36)	155.0 (6.10)	114.3 (4.50)	75.0 (2.95)	14.2 (0.56)	169.2 (6.66)	92.2 (3.63)	390.3 + S (15.37 + S)

	l Retract length	J Breathe	r port Hex	K	L	М	Ν
	mm (in)	type	mm (in)				
EC1	122.1 + S (4.81 + S)	-	-	-	10.0 (0.39)	22.2 (0.88)	10.2 (0.40)
EC2	255.5 + S (10.06 + S)	1/8 NPT	11.1 (0.44)	34.8 (1.37)	9.5 (0.37)	28.0 (1.10)	25.0 (0.98)
EC3	298.3 + S (11.74 + S)	1/8 NPT	11.1 (0.44)	41.1 (1.62)	12.7 (0.50)	35.0 (1.38)	25.0 (0.98)
EC4	425.3 + S (16.74 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	12.7 (1.60)	50.0 (1.97)	41.1 (1.60)
EC5	425.3 + S (16.74 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	19.1 (0.75)	50.0 (1.97)	35.0 (1.38)

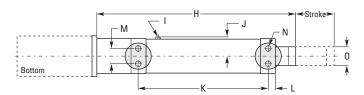
EC Series Outline Drawings

$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$

MS2 SideLugs Inline


Flange dimensions in accordance with ISO 6431 for:								
Type Bore Size								
EC1	30 mm							
EC2	50 mm							
EC3	63 mm							
EC4	80 mm							
EC5	100 mm							

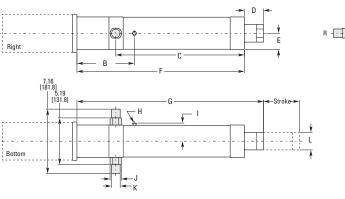
	A mm (in)	B mm (in)	C mm (in)	D mm (in)	E mm (in)	F mm (in)	G mm (in)	H mm (in)	l mm (in)	J Cyl Length mm (in)
EC1	78.0 (3.07)	62.0 (2.44)	43.7 (1.72)	8.0 (0.31)	-	20.0 (0.79)	20.0 (0.79)	20.5 (0.81)	27.1 (1.06)	101.7 + S (4.00 + S)
EC2	114.3 (4.50)	85.0 (3.35)	56.9 (2.24)	9.5 (0.37)	100.7 (3.96)	22.1 (0.87)	22.1 (0.87)	34.5 (1.36)	38.1 (1.50)	220.9 + S (8.70 + S)
EC3	127.0 (5.00)	100.0 (3.94)	69.6 (2.74)	12.7 (0.50)	121.3 (4.78)	25.0 (0.98)	25.0 (0.98)	37.7 (1.48)	47.5 (1.87)	260.5 + S (10.25 + S)
EC4	181.1 (7.13)	140.0 (5.51)	92.2 (3.63)	19.1 (0.75)	169.2 (6.66)	38.1 (1.50)	38.1 (1.50)	54.0 (2.13)	65.3 (2.57)	371.3 + S (14.62 + S)
EC5	181.1 (7.13)	140.0 (5.51)	92.2 (3.63)	19.1 (0.75)	169.2 (6.66)	38.1 (1.50)	38.1 (1.50)	54.0 (2.13)	65.3 (2.57)	371.3 + S (14.62 + S)


	K Retract length	act length L Breather port Hex		М	N	0	Р	Q
	mm (in)	type	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC1	122.1 + S (4.81 + S)	-	-	-	65.8 + S (2.59 + S)	6.6 (0.26)	10.0 (0.39)	22.2 (0.88)
EC2	255.5 + S (10.06 + S)	1/8 NPT	11.1 (0.44)	34.8 (1.37)	144.8 + S (5.7 + S)	9.0 (0.35)	11.0 (0.43)	28.0 (1.10)
EC3	298.1 + S (11.74 + S)	1/8 NPT	11.1 (0.44)	41.1 (1.62)	158.8 + S (6.25 + S)	11.0 (0.43)	12.5 (0.49)	35.0 (1.38)
EC4	425.3 + S (16.74 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	242.6 + S (9.55 + S)	18.0 (0.71)	19.1 (0.75)	50.0 (1.97)
EC5	425.3 + S (16.74 + S)	1/4 NPT	14.0 (0.55)	52.8 (2.08)	242.6 + S (9.55 + S)	18.0 (0.71)	19.1 (0.75)	50.0 (1.97)

MS6 Side Tapped Holes Inline

Flange dimensions in accordance with ISO 6431 for:						
Туре	Bore Size					
EC1	30 mm					
EC2	50 mm					
EC3	63 mm					
EC4	80 mm					
FC5	100 mm					

	А	В	С	D	E	F	G Cyl Length	H Retract length	I Breathe	r port Hex
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	type	mm (in)
EC1	43.7 (1.72)	-	-	19.2 (0.76)	20.5 (0.81)	19.1 (0.75)	101.7 + S (4.00 + S)	122.1 + S (4.81 + S)	-	-
EC2	56.9 (2.24)	100.7 (3.96)	22.1 (0.87)	22.1 (0.87)	34.5 (1.36)	28.5 (1.12)	220.9 + S (8.70 + S)	255.5 + S (10.06 + S)	1/8 NPT	11.1 (0.44)
EC3	69.6 (2.74)	121.3 (4.78)	25.1 (0.99)	25.1 (0.99)	37.7 (1.48)	34.8 (1.37)	260.5 + S (10.25 + S)	298.1 + S (11.74 + S)	1/8 NPT	11.1 (0.44)
EC4	92.2 (3.63)	169.2 (5.94)	40.0 (1.57)	40.0 (1.57)	54.0 (2.13)	46.1 (1.81)	371.3 + S (14.62 + S)	425.3 + S (16.74 + S)	1/4 NPT	14.0 (0.55)
EC5	92.2 (3.63)	169.2 (6.66)	40.0 (1.57)	40.0 (1.57)	54.0 (2.13)	46.1 (1.81)	371.3 + S (14.62 + S)	425.3 + S (16.74 + S)	1/4 NPT	14.0 (0.55)

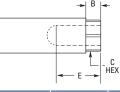

	J	К	L	М	N (MS6E)	N (MS6M	0
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC1	-	65.8 + S (2.59 + S)	9.9 (0.39)	16.0 (0.63)	-	M6 x 1-6H x 6.8 mm Dp	22.2 (0.88)
EC2	34.8 (1.37)	144.8 + S (5.7 + S)	11.0 (0.43)	25.0 (0.98)	5/16-18 UNC-2B x 0.33 Dp	M8 x 1.25-6H x 8.4 mm Dp	28.0 (1.10)
EC3	41.1 (1.62)	158.8 + S (6.25 + S)	12.5 (0.49)	30.0 (1.18)	3/8-16 UNC-2B x 0.40 Dp	M10 x 1.50-6H x 10.2 mm Dp	35.0 (1.38)
EC4	52.8 (2.08)	242.6 + S (9.55 + S)	19.1 (0.75)	40.6 (1.60)	5/8-18 UNF-2B x 0.55 Dp	M16 x 2-6H x 14 mm Dp	50.0 (1.97)
EC5	52.8 (2.08)	242.6 + S (9.55 + S)	19.1 (0.75)	40.6 (1.60)	5/8-18 UNF-2B x 0.55 Dp	M16 x 2-6H x 14 mm Dp	50.0 (1.97)

S

L

MT4 Trunnion Mounting Inline

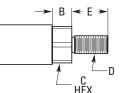
Flange dimensions in accordance with ISO 6431 for:							
Туре	Bore Size						
EC2	50 mm						
EC3	63 mm						
EC4	80 mm						
EC5	100 mm						


	A mm (in)	B mm (in)	C mm (in)	D mm (in)	E mm (in)	F Cyl Length mm (in)	G Retract length mm (in)
EC2	56.9 (2.24)	100.7 (3.96)	155.8 + S (6.13 + S)	34.5 (1.36)	28.5 (1.12)	220.9 + S (8.70 + S)	255.5 + S (10.06 + S)
EC3	69.6 (2.74)	121.3 (4.78)	171.2 + S (6.74 + S)	37.7 (1.48)	34.8 (1.37)	260.5 + S (10.25 + S)	298.1 + S (11.74 + S)
EC4	92.2 (3.63)	169.2 (5.94)	261.6 + S (10.30 + S)	54.0 (2.13)	46.1 (1.81)	371.3 + S (14.62 + S)	425.3 + S (16.74 + S)
EC5	92.2 (3.63)	169.2 (6.66)	261.6 + S (10.30 + S)	54.0 (2.13)	46.1 (1.81)	371.3 + S (14.62 + S)	425.3 + S (16.74 + S)

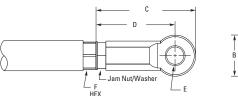
	H Breather port Hex		1	J	К	L	М	N
	type	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC2	1/8 NPT	11.1 (0.44)	34.8 (1.37)	19.1 (0.75)	15.9/16.0 (0.627/0.629)	28.0 (1.10)	106.9 (4.21)	75.0 (2.95)
EC3	1/8 NPT	11.1 (0.44)	41.1 (1.62)	25.0 (0.98)	19.9/20.0 (0.784/0.786)	35.0 (1.38)	129.6 (5.10)	90.0 (3.54)
EC4	1/4 NPT	14.0 (0.55)	52.8 (2.08)	31.8 (1.60)	24.9/25.0 (0.981/0.983)	50.0 (1.97)	181.6 (1.60)	131.8 (5.19)
EC5	1/4 NPT	14.0 (0.55)	52.8 (2.08)	31.8 (1.25)	24.9/25.0 (0.981/0.983)	50.0 (1.97)	181.6 (7.15)	131.8 (5.19)

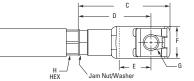
EC Series Outline Drawings

FT1 Female Threads Dimensions in [mm]



	A	В	С	[)	E
	mm (in)	mm (in)	mm (in)	FT1M	FT1 [FT1E]	mm (in)
EC1	20.8 (0.80)	7.6 (0.30)	19.0 (0.70)	M10 x 1.25 mm	-	17.0 (0.70)
EC2	27.8 (1.09)	12.0 (0.47)	25.4 (1.0)	M16 × 2.0 mm	5/8-18 UNF	19.0 (0.75)
EC3	34.9 (1.375)	17.2 (0.68)	31.8 (1.25)	M16 × 2.0 mm	5/8-18 UNF	25.4 (1.00)
EC4	50.0 (1.97)	20.0 (0.79)	47.6 (1.875)	M20 × 1.5 mm	1-14 UNS	31.0 (1.22)
EC5	50.0 (1.97)	20.0 (0.79)	47.6 (1.875)	M24 × 2.0 mm	1-12 UNF	31.0 (1.22)


MT1 Male Threads Dimensions in [mm]



		112/(
A	В	С	[)	E
mm (in)	mm (in)	mm (in)	MT1M	MT1 [MT1E]	mm (in)
20.8 (0.80)	7.6 (0.30)	19 (0.70)	M10 x 1.25 mm	-	27.0 (1.06)
27.8 (1.09)	12.0 (0.47)	25.4 (1.00)	M16 × 2.0 mm	5/8-18 UNF	32.0 (1.26)
34.9 (1.375)	17.2 (0.68)	31.8 (1.25)	M16 × 2.0 mm	5/8-18 UNF	32.0 (1.26)
50.0 (1.97)	20.0 (0.79)	47.6 (1.875)	M20 × 1.5 mm	3/4-16 UNF	40.0 (1.57)
50.0 (1.97)	20.0 (0.79)	47.6 (1.875)	$M24 \times 2.0 \text{ mm}$	1-12 UNF	40.0 (1.57)
	mm (in) 20.8 (0.80) 27.8 (1.09) 34.9 (1.375) 50.0 (1.97)	mm (in) mm (in) 20.8 (0.80) 7.6 (0.30) 27.8 (1.09) 12.0 (0.47) 34.9 (1.375) 17.2 (0.68) 50.0 (1.97) 20.0 (0.79)	A B C mm (in) mm (in) mm (in) 20.8 (0.80) 7.6 (0.30) 19 (0.70) 27.8 (1.09) 12.0 (0.47) 25.4 (1.00) 34.9 (1.375) 17.2 (0.68) 31.8 (1.25) 50.0 (1.97) 20.0 (0.79) 47.6 (1.875)	A B C Imm (in) MT1M 20.8 (0.80) 7.6 (0.30) 19 (0.70) M10 x 1.25 mm 27.8 (1.09) 12.0 (0.47) 25.4 (1.00) M16 x 2.0 mm 34.9 (1.375) 17.2 (0.68) 31.8 (1.25) M16 x 2.0 mm 50.0 (1.97) 20.0 (0.79) 47.6 (1.875) M20 x 1.5 mm	mm (in) mm (in) mm (in) MT1M MT1 [MT1E] 20.8 (0.80) 7.6 (0.30) 19 (0.70) M10 x 1.25 mm - 27.8 (1.09) 12.0 (0.47) 25.4 (1.00) M16 x 2.0 mm 5/8-18 UNF 34.9 (1.375) 17.2 (0.68) 31.8 (1.25) M16 x 2.0 mm 5/8-18 UNF 50.0 (1.97) 20.0 (0.79) 47.6 (1.875) M20 x 1.5 mm 3/4-16 UNF

EC1 14.0 (0.55) 26.0 (1.02) 67.5 (2.66) 54.4 (2.14) 9.98/10.1 (0.393/0.396) 17.0 (0.70) EC2 21.0 (0.83) 38.0 (1.50) 92.2 (3.63) 73.2 (2.88) 16.0/16.1 (0.629/0.633) 25.4 (1.00) EC3 21.0 (0.83) 38.0 (1.50) 92.2 (3.63) 73.2 (2.88) 31.8 (1.25) 16.0/16.1 (0.629/0.633) EC4 111.0 (4.37) 25.0 (0.98) 46.0 (1.81) 88.0 (3.46) 20.0/20.1 (0.787/0.790) 47.6 (1.875) EC5 31.0 (1.22) 60.0 (2.36) 138.5 (5.45) 108.5 (4.27) 24.9/25.0 (0.979/0.984) 47.6 (1.875)

FC2 Clevis with Pin Dimensions in [mm]

FS2 Spherical Joint Dimensions in [mm]

	А	В	С	D	E	F	G	H HEX
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
EC1	20.0 (0.78)	10 (0.39)	62.9 (2.48)	50.9 (2.00)	32 (1.26)	20 (0.79)	9.88/10.0 (0.389/0.393)	17.0 (0.67)
EC2	32.0 (1.26)	16.0 (0.63)	92.2 (3.63)	73.2 (2.88)	32.0 (1.26)	32.0 (1.26)	15.9/16.0 (0.625/0.630	25.4 (1.00)
EC3	32.0 (1.26)	16.0 (0.63)	92.2 (3.63)	73.2 (2.88)	32.0 (1.26)	32.0 (1.26)	15.9/16.0 (0.625/0.630	31.8 (1.25)
EC4	40.0 (1.57)	20.0 (0.79)	116.0 (4.57)	91.0 (3.58)	40.0 (1.57)	40.0 (1.57)	19.9/20.0 (0.782/0.787	47.6 (1.875)
EC5	50.0 (1.97)	25.0 (0.98)	145.5 (5.73)	113.5 (4.47)	50.0 (1.97)	50.0 (1.97)	24.9/25.0 (0.979/0.984	47.6 (1.875)

KOLLMORGEN

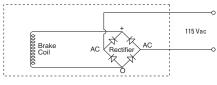
ഗ

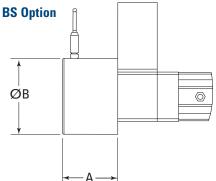
Electric Cylinder Options

Brake Option

The BS and motor brake options are typically used with electric cylinders employing ball screw drive assemblies. The electrically released, spring set brake prevents backdriving when the unit is at rest, or in case of a power failure.

When power is applied, the brake releases and the cylinder is free to move. When power is off, springs engage the brake to hold the load in position.


The BS brake is mounted directly to the ballscrew to provide holding torque, without relying on the rest of the drive train.


When using a motor mounted brake the brake torque is multiplied by the belt or gear reduction, and does not interfere with certain rear mounting options. But, if the belt fails, the brake will be inoperative.

BS is not available with:

- · Inline motor orientation
- · Rear mounting options: -MP2, -MP3, -MS1, -MF2, -MF3
- EC1 (Use BA24 option)

BS115 Wiring Connections

Series	Dim "A" in [mm]	Dim "B" in [mm]
EC2	2.73 (69.3)	3.09 (78.5)
EC3	3.32 (84.3)	3.83 (97.3)
EC4	3.94 (100.0)	5.58 (141.7)
EC5	3.94 (100.0)	5.58 (141.7)

BS Ballscrew Brake Option

Mounting Location:	Ballscrew (see dimensions)
Voltage Options:	115 Vac (-BS115), 24 Vdc (-BS24), 24 Vac (-BA24)
Cable Type/Length:	EC2/3/4/5 – 3.7 m [12 ft] with quick disconnect
	N2 – 3.7 m [12 ft] flying leads (no quick disconnect)
Holding Torque:	EC2 – 3.9 N-m [35 lb-in], 12.5 W electrical power
	EC3 – 6.7 N-m [60 lb-in], 17 W electrical power
	EC4/5 – 39.2 N-m [350 lb-in], 15 W electrical power
	N2 – 3.4 N-m [30 lb-in], 13 W electrical power

	Screw	With BS Option N [lb]	Without BS Option N [lb]
	-2B Ball	1100 [240]	_
	-5B Ball	2670 [600]	—
N2	-5A Lead (w/ T22)	2670 [600]	445 [100]
	-5A Lead (w/ T31)	2670 [600]	1780 [400]
	-8A Lead	-	2670 [600]
	-16B Ball	1550 [350]	—
EC2	-05B Ball	3600 [810]	—
	-04A Lead	3600 [810]	3600 [810]
	-16B Ball	2660 [600]	—
EC3	-10B Ball	4260 [960]	—
	-05B Ball	7200 [1620]	—
	-04A Lead	7200 [1620]	7200 [1620]
EC4	-25B Ball	9940 [2230]	—
204	-10B Ball	12000 [2700]	—
EC5	-32B Ball	7770 [1750]	
LC0	-10B Ball	24800 [5590]	

Notes:

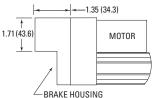
· High vibration in a machine may cause an lead screw to backdrive at lower values than indicated above. In such applications, a brake may be necessary

The BS and motor brakes should only be used to hold static (already stopped) leads. They are not designed for repeated use as dynamic brakes

Quick-disconnect cable provided only on EC models. N2 includes flying leads cable from grommet on brake can.

Motor Brake AKM	BA24 for EC1
Rear motor shaft	Inline with motor shaft within gear housing
24 Vdc	24 Vdc
Part of motor cable set	Flying Leads
See holding torque table	0.56 Nm (5.0 lb-in)
	Rear motor shaft 24 Vdc Part of motor cable set

	Holding Torque Nm (lb-in)
AKM23	1.42 (12.6)
AKM42	5.30 (46.9)
AKM52	14.50 (128)


Example for BS or BA24 Options

Holding Force (N) = Brake (Nm) $\times 2\pi \times 1000 \times \text{gear ratio}$

Lead (mm/rev) Example: EC3-AKM42G- ■ ■ -15-16B

Holding Force = $5.3 \times 2\pi \times 1000 \times 1.5 = 3120$ N

BA24 Option

www.kollmorgen.com

Electric Cylinder Options

N2 Dual Rod-End Bearing Option

DB Dual Rod-End Bearing

Our standard N2 Series electric cylinder contains a single rod-end bearing. The dual rod-end bearing (DB) option increases thrust tube side load capacity and reduces undesirable thrust tube runout, while reducing the stroke by 1.5 inches. (All EC Series cylinders are equipped with a dual rod-end bearing automatically, so this option does not apply to them.)

DB available with:

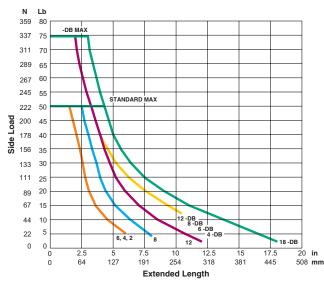
• N2 Series 12 inch stroke and below

DB required with:

• N2 Series above 12 inch stroke

Notes:

- The DB option reduces stroke by 1.5 inches
 - (e.g. 18" with DB yields only 16.5" actual stroke.)


Side Load

All Kollmorgen electric cylinders are designed to withstand a limited amount of side load on the thrust tube. The thrust tube in a standard N2 Series cylinder is supported by a single rod-end bearing and by a patented internal guide assembly. This bearing system has a limited capacity to handle side loads, shown in the curve below.

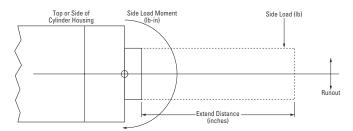

When increased side load capacity or stiffness is required, or when moving a load that is not externally supported, the dual rod-end bearing (DB) option is recommended. This option adds a second thrust tube rodend bearing for additional support, while subtracting 1.5 inches from the available stroke. N2 models above 12 inches stroke require the DB option.

Another means of increasing side load capacity is to use the higher capacity EC series, which includes the dual rod-end bearing in its standard configuration

N2 Series — Side Load Capacity vs. Extended Length

Standard N2 Cylinder (Single Bearing)

DB Option (Dual Bearings)


Runout

The -DB option reduces thrust tube runout by lengthening the thrust tube support bearing in the rod-end housing.

Kollmorgen recommends the DB option to reduce runout whenever the thrust tube is the only means of guiding the load. Performance improvement is most observable for cylinders with stroke length above 12 inches, or whenever runout is critical as the thrust tube approaches full extension.

For the least amount of runout possible for a standard product, specify the DB option and also increase the stroke of the cylinder while "short-stroking" the unit.

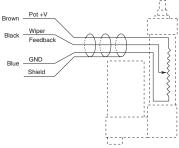
If the load is guided externally by linear bearings, the standard bearing is preferred since it allows greater mounting misalignment and minimal friction.

Selection Criteria

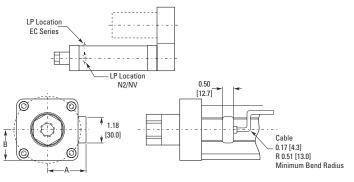
DB Option	Standard
When using clevis or trunnion mount	When rigidly mounted
>12 in	<12 in
Unguided thrust tube	Guided thrust tube (externally)
High side load	
Low runout critical	

Linear Potentiometer Option

L Linear Potentiometer Option


The L linear potentiometer option is required for operation with our Analog Position Controls, and is used in applications where analog position feedback voltage signal is needed.

The linear potentiometer resides within the cylinder housing and is energized by an external DC voltage source. The potentiometer wiper arm is attached to the drive nut/guide flange assembly, and moves the same distance as the thrust tube. The signal from the linear potentiometer is an absolute voltage, proportional to linear displacement of the cylinder.


L available with:

• EC and NC cylinders

Connections

Dimensions in [mm]

Cylinder Model	Dim. A [in (mm)]	Dim. B [in (mm)]
N2	1.38 (35.1)	1.01 (25.7)
EC2	1.47 (37.3)	1.12 (28.5)
EC3	1.72 (43.7)	1.37 (34.8)
EC4	2.15 (54.5)	1.82 (46.1)
EC5	2.15 (54.5)	1.82 (46.1)
* Linear pot option not availab	ole for EC1	

Specifications

Operating Temperature: -28° to +70°C [-20° to +160°F]

1.0 Watt max. (11 mA at 24 V; 6 mA at 12 V; 3 mA at 5 V)

Power Rating: Resistance: Linearity: Stroke:

see table below see table below

: Available in the lengths shown below. Consult factory for lengths.

Cylinder Model	Stroke [in (mm)]	Resistance (±30%)	Linearity
	2.00 (50.8)	3000	
	4.00 (102)	6000	
	6.00 (152)	9000	
N2	8.00 (203)	9000	±1% of full stroke
	10.0 (254)	9000	
	12.0 (305)	7000	
	16.5 (419)	7000	
	1.97 (50)	3000	
	3.94 (100)	6000	
	5.91 (150)	9000	
EC2, EC3, EC4, EC5	7.87 (200)	9000	±1% of full stroke
ECZ, EC3, EC4, EC3	9.84 (250)	9000	±1% UTTUITSUUKE
	11.8 (300)	7000	
	17.7 (450)	7000	
	23.6 (600)	7000	

Electric Cylinder Options

Linear Rod Bearing Option

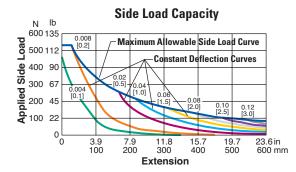
LR Linear Rod Bearing Option

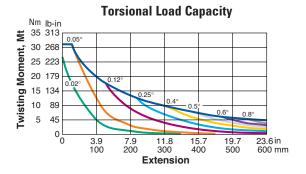
The LR linear rod bearing option is used in applications where side loads are present, or when the load is not externally supported.

Reasons for using the LR Linear Rod Bearing are:

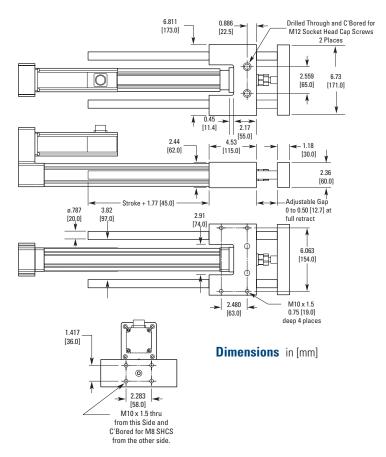
- Increased side load capacity
- Anti-rotation-reduces any rotational motion of the moving load
- Higher positioning efficiency when side loads are present
- Lower thrust tube runout

LR available with:


• EC2


LR not available with:

• MF1, MF3, MS1, MS2 mounting options


Weight calculation:

Weight $(Ib_{f}) = 0.0147$ stroke (mm) + 7.6 Ib_{f}

To order the Linear Rod Bearing as a separate component: Linear Rod Bearing Part Number

S

KOLLMORGEN

Protective Boot Option

PB Protective Boot Option

With the PB option, a durable polyurethane boot protects the thrust tube area from solid contaminants (dust, wood and metal shavings), and splashed liquids, etc.

EC Series cylinders equipped with the PB are protected to the IP65 standard. Note that some Kollmorgen motor options are not protected to this level.

Consult the factory for assistance when special environmental protection is required.

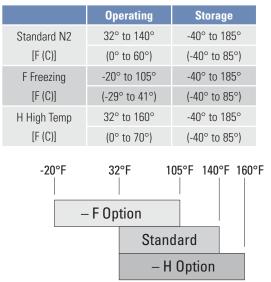
We also have special options for clean room applications, where outgassing and contamination by the cylinder are a concern.

PB available with:

• All EC and N2 Electric Cylinders

Dimensions in [mm]

When fully retracted, the boot gathers on an extra length of thrust tube. The extra thrust tube length is tabulated here.


Cyline	der Model	Dimens	ions
Series	Stroke Length	Dim. L Add'l Length in [mm]	Boot Diameter in [mm]
EC2	0-149 mm 150-299 300-449 450-600 601-750	1.16 [29.5] 1.83 [46.5] 2.54 [64.5] 3.21 [81.5] 3.75 [95.3]	2.50 [63.5]
EC3	0-199 mm 200-399 400-599 600-800 801-1000	1.46 [37.1] 2.13 [54.0] 2.83 [71.9] 3.54 [89.9] 4.06 [103.1]	3.00 [76.2]
EC4	0-249 mm 250-499 500-749 750-999 1000-1249 1250-1500	1.60 [40.6] 2.47 [62.7] 3.35 [85.1] 4.17 [105.9] 5.05 [128.3] 5.93 [150.6]	3.75 [95.3]
EC5	0-249 mm 250-499 500-749 750-999 1000-1249 1250-1500	1.60 [40.6] 2.47 [62.7] 3.35 [85.1] 4.17 [105.9] 5.05 [128.3] 5.93 [150.6]	3.75 [95.3]
N2	0-2.57 in 2.58-5.08 5.09-7.59 7.60-10.11 10.12-15.19 15.20-16.50	0.75 [19.1] 1.00 [25.4] 1.30 [33.0] 1.40 [35.6] 1.90 [48.3] 2.80 [71.1]	2.50 [63.5]

Electric Cylinder Options

N2 Environmental Options

Temperature Ranges (N2 Series)

Note: F and H can not be ordered on the same cylinder.

H High Temperature

The H high temperature option allows operation in high temperature environments (to 160°F [70°C]) by changing certain plastic parts within the cylinder to bronze.

H available with:

All N2 Series

Notes:

• Consideration must be given to the operating temperature ranges of the motor, encoder, and limit switches.

F Sub-Freezing Environment Option

In extremely cold conditions the lubricating grease in the positioner thickens, rubber parts (belts and stops) stiffen, and mechanical clearances tighten. This option includes two alterations:

- 1. Bearing grease is replaced with a less viscous lubricant.
- 2. Lead nut tolerances are increased. Both thread clearance and pitch length are increased to allow for the varying coefficients of expansion between the steel leadscrew and polyacetal or bronze drive nut.

The result is a device which can operate at these low temperatures, but with reduced life (due to the pre-worn lead nut surfaces).

Contact Kollmorgen for more details. No change is necessary in ball nut models since there is steel to steel contact (same coefficient of thermal expansion).

F Sub-Freezing Environment Option available with :

All N2 Series

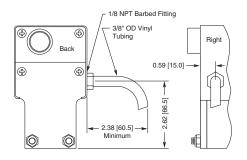
Notes:

- This option increases system backlash to 0.025 inches (0.64 mm) max. for lead screw units.
- Should a -F sub-freezing option lead screw unit be operated at room temperature or above, noisy operation and increased backlash are normal.

W Water Resistant Option

The water resistant option (W) is recommended in applications where the cylinder is exposed to light mist or occasional splashing with water or non-corrosive liquids. In addition to a sealant on all mating surfaces, a 10 foot (3 m) breather tube and fitting is provided to allow the unit to breathe from a non-contaminated dry area. Or, the customer may choose to apply positive, low pressure (2-3 psi [14-20 kPa]) dry air to the cylinder through this fitting.

W available with:


All N2 Series

Notes:

• The -W option does <u>not</u> provide a waterproof cylinder. The cylinder <u>cannot</u> be submerged or immersed repeatedly in water.

W Breather Dimensions N2 Series Cylinders

Electric Cylinder Accessories

Accessories

Magnetic Position Sensors

Kollmorgen Electric Cylinders are equipped with position indicating magnets installed internally on both sides of the guide cylinder. Noncontacting position sensors are available to sense the magnet as it passes by.

Position sensors mount directly to standard EC and N2 Series cylinders. NPN or PNP sensors are available in normally open or normally closed switch configurations. These sensors use a Hall-effect element and simple solid state electrical circuit. See page 114 for product specifications.

End-of-Travel Limits

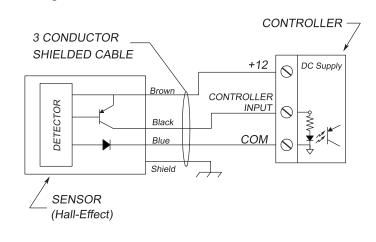
To maximize cylinder life, Kollmorgen recommends the use of end-oftravel "limit switches" (position sensors) with all cylinders.

The purpose of an end-of-travel sensor is to signal the controller that the cylinder is about to travel beyond its normal safe operating region, and is nearing its physical end of stroke. The controller brings the cylinder to a stop to prevent physical contact, and to avoid damage to the cylinder, the load, or the machine. The sensors must be located such that an adequate stopping distance is provided between the sensing position and the physical end of stroke. Normally closed switches are generally used for end-of-travel sensing. Normally closed switches are considered "fail safe" because when a cable becomes accidentally severed or disconnected, motion is prevented.

Position Sensing

Programmable position controls use position sensors for two purposes. A normally open switch is generally used to establish a home, or zero reference position. Normally closed switches are used for extend and retract end-of-travel limits.

S


Electric Cylinder Accessories

Position Sensors

		EC1		N2 and EC2 - EC5	
Positi	ion Sensor Specifications	EC1-18P-03	EC1-18P-NC-03	PSP-1	PSP-2
	Connection	Norm. open Norm. closed		Norm. open	Norm. closed
ion	Led Color	Re	ed	Yellow	Red
Connection	Switch Type		Hall-e	effect	
Cor	Output Type		Sourcin	g (PNP)	
	Number of Leads		3 + S	hield	
>	Voltage	4.5 to 28 Vdc 10–24 Vdc			4 Vdc
Supply	Current	10 mA @ 24 Vdc		7 mA @ 12 Vdc; 13 mA @ 24 Vdc	
	Power	0.28 W		0.24 W	
	DC Voltage max	28 Vdc 24 Vdc			Vdc
Output	AC Voltage max		AC not	allowed	
Out	Current max		100	mA	
	Power max		3	W	
e	Operating Temperature	14° to 158°F [-10° to 70°C]		-4° to 158°F	[-20° to 70°C]
ratur	Storage Temperature	14° to 158°F [-10° to 70°C] -4° to 176°F [-20° to 8			[-20° to 80°C]
Temperature	Protection Rating	IP67			
F	CE Approved		Ye	es	

Hall-Effect Switches

- Higher tolerance to vibration
- Greater durability and reliability (no moving parts)
- Requires external DC power. Available on Kollmorgen controls.

Wiring for EC1-18P-03, EC1-18P-NC-03, PSP-1 and PSP-2

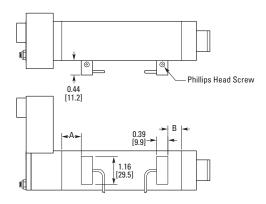
Notes:

- 1. Normally closed PNP sensors are recommended to provide fail-safe operation
- 2. NPN Hall effect sensors are also compatible with Kollmorgen drive however require a pull-up resistor.

Position Sensors

Position Sensor Mounting

The diagrams below show sensor mounting location when cylinder magnet and sensor are physically aligned.


This location is recommended as a starting point when setting up a cylinder for the first time. Depending on the speed and payload of the application, switches may need to be moved inward to prevent hard-stop crash when the load travels at full speed past a limit switch.

Notes:

• Position sensors can be mounted along either side of a cylinder.

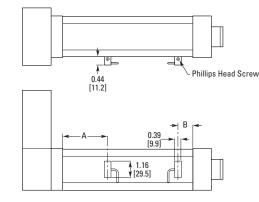
- Recommended minimum distance between switches is 0.65 inches.
- Using position sensors for end-of-travel protection reduces effective travel distance. Consult factory for details.

Dimensions in [mm]

Note: Dimensions "A" and "B" are Approximate End of Stroke Locations for the Position Sensors.

Model	Dim "A" in [mm]	Dim "B" in [mm]
N2 Lead	1.00 (25.4)	0.70 (17.8)
N2 Ball	1.40 (35.6)	0.30 (7.6)

Ordering Information


Position Sensors and Quick Disconnect Cables

See page 162 for information on all position sensor options for EC1. See page 163 for information all position sensor options for N2/EC2-EC5 products.

Spare Quick Disconnect Cables

Model Number	Description
QPS-4M	13 ft [4 m] extension cable
QPS-9M	30 ft [9 m] extension cable

EC Cylinder Position Sensor Mounting

Note: Dimensions "A" and "B" are Approximate End of Stroke Locations for the Position Sensors.

Model	Dim "A" in [mm]	Dim "B" in [mm]
EC1	0.748 (19.0)	0.551 (14.0)
EC2	2.90 (73.7)	1.90 (48.3)
EC3	3.03 (77.0)	2.23 (56.6)
EC4	5.39 (137.0)	2.48 (63.0)
EC5	5.39 (137.0)	2.48 (63.0)

AKM Brushless Servo System Specifications

AKM11, 13, and 23 Servomotor Performance with AKD Servo Drive

AKM Servomotor	AKM11B 120/240 Vac	AKM13C 120/240 Vac	AKM23D 120/240 Vac
Servo Drive	AKD	AKD	AKD
Drive [lc/lp] Arms	3.0 / 9.0	3.0 / 9.0	3.0 / 9.0
Feedback Type	SFD	SFD	SFD
T Cont Stall [Ib-in (Nm)]	1.62 (0.183)	3.62 (0.409)	10.3 (1.16)
T Peak Stall [lb-in (Nm)]	6.26 (0.707)	15.3 (1.73)	34.0 (3.84)
RPM Max 240 Vac	8000	8000	6540
Drive	AKD-x00306	AKD-x00306	AKD-00306
Motor	AKM11B-CNC	AKM13C-CNC	AKM23D-BNC
Motor/Brake	-	-	AKM23D-B2C
Value Line Cables*			
Power	VP-507BEAN-xx-x	VP-507BEAN-xx-x	VP-507BEAN-xx-x
Power/Brake	VF-DA0474N-xx-x	VF-DA0474N-xx-x	VP-508CFAN-xx-x
SFD Feedback	VF-RA2474N-xx-x	VF-RA2474N-xx-x	VF-DA0474N-xx-x
Resolver Feedback	-	-	VF-RA2474N-xx-x
Sine Encoder Feedback	-	-	VF-SB4474N-xx-x

*Value Line Cables are not suitable for flexing applications. For flexing applications request information about Performance Line Cables. Cable part number suffix xx-x indicates cable length in meters. Example: suffix 03-0 equals 3.0 meters. Available lengths include 1.0, 3.0, 6.0, 9.0, or 12.0 meters.

AKM11, 13, and 23 Mechanical Specifications

	AKM11	AKM13	AKM23
Motor Inertia [Ib-in-s ² (kg-cm ²)] (based on SFD)	1.5E-5 (0.0169)	4.0E-5 (0.045)	0.00019 (0.22)
Brake Inertia [lb-in-s² (kg-cm²)] (additional)	_	_	0.000011 (0.012)
Motor Weight [Ib (kg)]	0.77 (0.35)	1.4 (0.63)	3.0 (1.38)

AKM1X

AKM23

S

A K

KOLLMORGEN

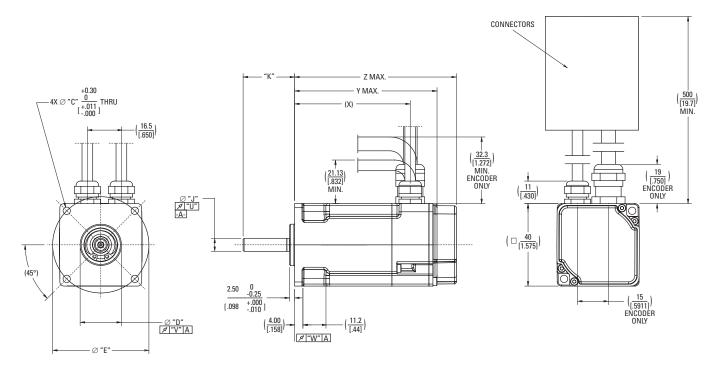
AKM42 and 52 Servomotor Performance with AKD Servo Drive

AKM Servomotor	AKM42G 120/240 Vac	AKM52H 120/240 Vac	AKM52H 400/800 Vac	
Servo Drive	AKD	AKD	AKD	
Drive [lc/lp] Arms	6.0 / 18.0	6.0 / 18.0	6.0 / 18.0	
Feedback Type	SFD	SFD	SFD	
T Cont Stall [lb-in (Nm)]	31.2 (3.53)	75.0 (8.48)	75.0 (8.48)	
T Peak Stall [lb-in (Nm)]	97.0 (11.0)	191 (21.6)	191 (21.6)	
RPM Max 240 Vac	4460	2390	4780	
Drive	AKD-x00606	AKD-x00606	AKD-x00607	
Motor	AKM42G-BNC	AKM52H-BNC	AKM52H-BNC	
Motor/Brake	AKM42G-B2C	AKM52H-B2C	AKM52H-B2C	
Value Line Cables*				
Power	VP-507BEAN-xx-x	VP-507BEAN-xx-x	VP-507BEAN-XX-X	
Power/Brake	VP-508CFAN-xx-x	VP-508CFAN-xx-x	VP-508CFAN-XX-X	
SFD Feedback	VF-DA0474N-xx-x	VF-DA0474N-xx-x	VF-DA0474N-XX-X	
Resolver Feedback	VF-RA2474N-xx-x	VF-RA2474N-xx-x	VF-RA2474N-XX-X	
Sine Encoder Feedback	VF-SB4474N-xx-x	VF-SB4474N-xx-x	VF-SB4474N-XX-X	

*Value Line Cables are not suitable for flexing applications. For flexing applications request information about Performance Line Cables. Cable part number suffix xx-x indicates cable length in meters. Example: suffix 03-0 equals 3.0 meters. Available lengths include 1.0, 3.0, 6.0, 9.0, or 12.0 meters.

AKM42 and 52 Mechanical Specifications

	AKM42	AKM52
Motor Inertia [Ib-in-s ² (kg-cm ²)] (based on SFD)	0.0013 (1.5)	0.0055 (6.2)
Brake Inertia [lb-in-s² (kg-cm²)] (additional)	0.00006 (0.068)	0.00015 (0.17)
Motor Weight [Ib (kg)]	7.5 (3.39)	12.8 (5.8)



AKM52

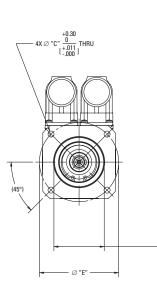
AKM Brushless Servo System Specifications

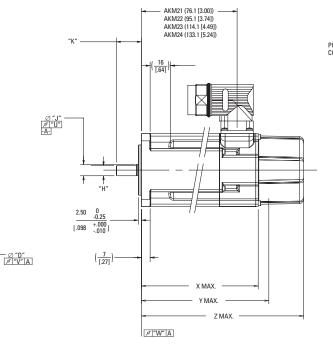
AKM1x Frame Outline Drawings

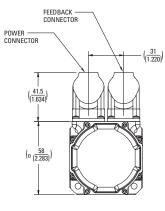
AKM1x Frame Dimensions

Mounting Code	"C"	"D"	"E"	"F"	"H"	"J"	"K"	"L"	"М"	"N"
AN	4.30 [.169]	30 ^{+0.000} -0.021 [1.811 ^{+.0000} 0008]	46.0 [1.811]	-	_	8.0 ^{+0.000} -0.015 +.0000 [.3150 ₀₀₀₆]	25.0 [.984]	-	-	-

(X)	Ү МАХ	Z MAX (W/ BRAKE)	MODEL
56.1	69.6	79.0	AKM11
[2.21]	[2.74]	[3.11]	
94.1	107.6	117.0	AKM13
[3.70]	[4.24]	[4.61]	

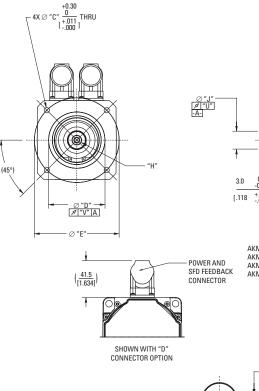

Dimensions are in mm [inches].

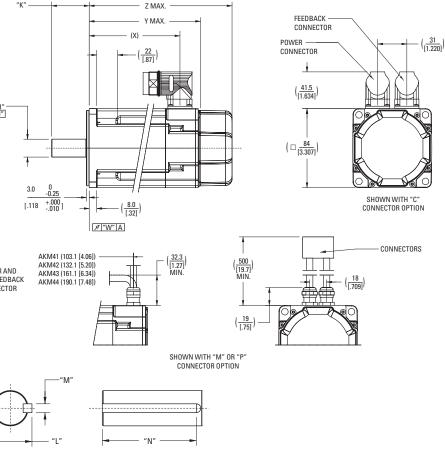

Product designed in metric.


English conversions provided for reference only.

 \triangleright

AKM2x Frame Dimensions


Mounting Code	"C"	"D"	"E"	"H"	"J"	"К"	"U"	" V "	"W"
EF	5.10 [.201]	38.10 ^{+0.00} -0.05 [1.500 ^{+.000} 002]	66.68 [2.625]	8.64 [.340]	9.525 ^{+0.000} -0.013 [.3750 ^{+.0000} 0005]	20.57 ± 0.25 [0.810 ± 0.010]	0.051 [.0020]	0.10 [.004]	0.10 [.004]


(X MAX) ("C" Connector Option W/ Resolver)	Ү МАХ	Z MAX (W/ BRAKE)	MODEL
86.2	95.4	129.5	AKM21
[3.39]	[3.76]	[5.10]	
105.2	114.4	148.5	AKM22
[4.14]	[4.50]	[5.85]	
124.2	133.4	167.5	AKM23
[4.89]	[5.25]	[6.59]	
143.2	152.4	186.5	AKM24
[5.64]	[6.00]	[7.34]	

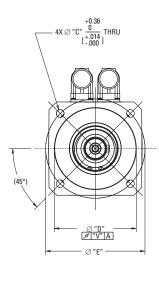
Dimensions are in mm [inches]. Product designed in metric. English conversions provided for reference only.

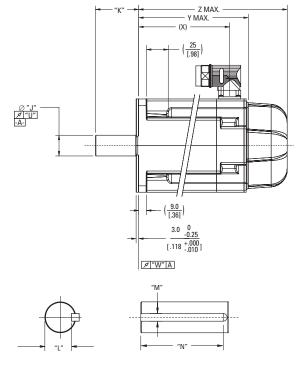
AKM Brushless Servo System Specifications

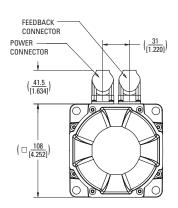
AKM4x Frame Outline Drawings

AKM4x Frame Dimensions

Mounting Code	"C"	"D"	"E"	"H"	"J"	"К"	"L"	" M "	"N"	"U"	" V "	"W"
EK	5.54 [.218]	73.025 ^{+0.000} -0.051 [2.8750 ⁺ .0000]	98.43 [3.875]	_	12.700 ^{+0.000} -0.013 [.5000 ^{+.0000}]	31.75 ± 0.25 [1.250 ± .010]	14.09 ^{+0.00} -0.43 [.555 ^{+.000}]	3.175 ^{+0.000} -0.050 [.1250 ^{+.0000} [.0020]	19.05 ± 0.25 [.750 ± .010]	0.051 [.0020]		0.10 [.004]


(X)	Υ ΜΑΧ	Z MAX (W/ BRAKE)	MODEL
96.4	118.8	152.3	AKM41
[3.80]	[4.68]	[6.00]	
125.4	147.8	181.3	AKM42
[4.94]	[5.82]	[7.14]	
154.4	176.8	210.3	AKM43
[6.08]	[6.96]	[8.28]	
183.4	205.8	239.3	AKM44
[7.22]	[8.10]	[9.42]	


Dimensions are in mm [inches].


Product designed in metric.

English conversions provided for reference only.

AKM5x Frame Outline Drawings

AKM5x Frame Dimensions

Mounting Code	"C"	"D"	"E"	"J"		"К"	"L"	" M "	"N″	"U"	" V "	"W"
EK	8.33 [.328]	55.563 ^{+0.000} _0.051 [2.1874 ^{+.0000} 0020]	125.73 [4.950]	15.875 ^{+.0} - 0. [.625 ^{+.0} 0		44.45 [1.75]	13.16 ^{+0.00} -0.10 [.518 ^{+.000} 004]	4.737 ^{+0.051} -0.000 [.1865 ^{+.0020}] 0000	34.9 ^{+0.25} -0.25 [1.375 ^{+.0100}] 0100	0.051 [.0020]	0.10 [.004]	0.10 [.004]
Z MA) Sine Enco (No Brai	DER	Z MAX Sine Encoder (W/ Brake)	(X)	١	Y MAX	Z MAX (W/ BRAKE)	MODEL				
146.0 [5.75]		189.0 [7.44])5.3 .15]		127.5 [5.02]	172.5 [6.79]	AKM51				
177.0 [6.97]		220.0 [8.66]		36.3 .37]		158.5 [6.24]	203.5 [8.01]	AKM52				

Dimensions are in mm [inches]. Product designed in metric. English conversions provided for reference only.

AKD Options and Accessories

AKD BASIC Drives

High Performance Capabilities in an Integrated Drive/Control Solution

Add co-engineering to your toolbox. Save money, simplify your machine and customize performance to meet the specific needs of each customer or application – as needed, today or tomorrow.

Our new Kollmorgen AKD[™] BASIC drives add BASIC-programmable machine and motion control to the superior performance of our AKD drive platform. So engineers can quickly customize performance at the drive level without touching the PLC. In fact, for many applications you can avoid the expense, wiring and cabinet space of a PLC altogether.

Whether you rely on your own engineering expertise or Kollmorgen's, the base and Expanded I/O versions of our AKD BASIC drive give you the unprecedented machine and motion control flexibility in a compact, fully integrated drive package. It's one more example of our co-engineering mission to help you deliver exactly what your customers want – when they want it – in solutions that are more cost-effective to build, simpler in design and faster to market.

AKD BASIC Language Programmable Drive

In addition to the wide selection and key features of our proven AKD, the standard version of our AKD BASIC drive offers:

- **Programmable machine control built into the drive,** so you can engineer perfect axis-level performance without touching the machine controller. In fact, AKD BASIC can eliminate the need for a PLC in single and 1.5 axis applications reducing wiring requirements, panel space, design complexity and cost.
- High performance motion control built into the drive, enabling increased speed for more complex moves in a simpler design with reduced wiring.
- BASIC Language programming, providing simple program flow control in a solution that's easy to learn, quick to master and universally accepted.
- An integrated development environment, allowing single-point programming, de-bugging, commissioning, tuning and management of your AKD BASIC drive from within AKD WorkBench. Our BASIC editor provides innovative features that speed development time and reduce coding errors.
- Source code lockout with password protection, freeing you to differentiate your product with drive-level control while safeguarding your intellectual property.

I/O Capabilities	Base Version	Expanded I/O Version
Digital Inputs	8	20
Digital Outputs	3	13
Analog Inputs	1	2
Analog Outputs	1	2

Expanded I/O AKD BASIC Programmable Drive

Building on the features of the AKD BASIC drive, we also offer an expanded

I/O version that adds:

- A total of 20 digital inputs, 13 digital outputs, 2 analog inputs and 2 analog outputs, reducing or eliminating the need for remote I/O and its associated installation and wiring costs.
- An SD memory card slot for loading, and restoring programs and parameters, without the need for a PC.

Development Tools that Speed Programming and Improve Quality

Co-engineering is a powerful tool. To make it easy for you to provide better solutions for your customers, we provide an innovative BASIC programming environment within Kollmorgen WorkBench. So there's only one software package to use for all of your drive setup, configuration, tuning and management tasks in addition to motion and machine control programming.

Pre-built code templates give your application a head-start, while automatic formatting, highlighting and other ease-of-use features increase programming speed and accuracy. Complete access to all programming capabilities and drive features within a single environment helps speed your development of complete, optimally engineered solutions.

Novice users will enjoy a short ramp-up time to productive coding, while experienced users will discover well-designed tools that take their programming skills to new levels of speed and quality.

- 1 Integrated axis setup
- 2 Code snippets simplify formatting
- 3 Auto-complete helps speed coding and reduce errors
- 4 Automatic color coding makes it easy to distinguish comments, parameters, print statements and other types of code
- 5 Full debugger accelerates development
- 6 Packaged program console provides instant program status
- 7 Menu-driven navigation provides intuitive look and feel
- 8 Window pinning maximizes workspace

S Kollmorgen WorkBench File Edit View Tools Help		
	2 - Postion Hode + Serve To Drive Severate have Program The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load t was the dives The page a used to odd the BASC program file and load to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the BASC program The page a used to odd the page a use	Debug - Image: Constraint of Fill Step Over (F10) Step Over (F10) Step Over (F10) Toggle Breatpoint (F3) Debug All Breatpoints Disable All Breatpoints Disable All Breatpoints Disable All Breatpoints Presult = Ind_ V Add Stop Content
	30 Power. For Command + 0 2 3 31 * Mover. Gold55 * 35 Power. Acc + 1000* Acceleration (drive units) 9 Console 8 4 Image: Social Date: Program 8 4	27 atun 27 se
Add New AND	Every Line Company Series More Transformed Every Line Company Series	

AKD Options and Accessories

AKD PDMM[™] Integrated Servo Drive and Automation Controller

Build Simpler and Better with Drive-Resident Machine and Motion Control

Extend your design options. Control as many as eight axes or more without the need for a PLC or PAC. Reduce cabinet space and wiring requirements. Program perfect machine and motion control for any project using a single, fully integrated programming environment. Build a better machine at a lower cost.

Our new addition to the AKD[™] drive family combines one servo axis, a master controller that supports multiple additional axes, and the full automation capability of Kollmorgen Automation Suite[™]—all in a single, compact package.

Welcome to the AKD PDMM[™] programmable drive, multi-axis master.

Performance Specifications

120/240 Vac 1- and 3-Phase	Continuous Current (Arms)	Peak Current (Arms)	H (mm/inches)	W (mm/inches)	D (mm/inches)
AKD-M00306-MCEC-0000	3	9	168 / 6.61	89 / 3.50	156 / 6.14
AKD-M00606-MCEC-0000	6	18	168 / 6.61	89 / 3.50	156 / 6.14
AKD-M01206-MCEC-0000	12	30	196 / 7.72	107 / 4.22	187 / 7.36
240/400/480 Vac 3-Phase	Continuous Current (Arms)	Peak Current (Arms)	H (mm/inches)	W (mm/inches)	D (mm/inches)
					U
3-Phase	Current (Arms)	(Arms)	(mm/inches)	(mm/inches)	(mm/inches)

- Kollmorgen Automation Suite[™] provides fully integrated
- programming, testing, setup and commissioning
- Embedded web server utility simplifies service
- Control 8 axes or more* while reducing machine footprint
 - EtherCAT multi-axis master motion controller integrated with a standard AKD[™] drive axis
 - Full IEC61131-3 soft PLC for machine control, with support for all 5 programming languages
 - Choice of PLCopen for motion or Pipe Network[™] for programming motion control
 - 32 kB non-volatile memory stores machine data to eliminate scrap upon restart after power failure
 - SD Card slot simplifies backup and commissioning, with no PC required
 - Onboard I/O includes 13 digital inputs,
 4 digital outputs, 1 analog input, 1 analog output (expandable with AKT series of remote I/O)
- Works with Kollmorgen Visualization Builder for programming AKI human-machine interface panels

*Maximum axis count depends on motion/automation complexity and performance (8 axes nominal based on medium complexity at 4 kHz network update rate)

A Single, Scalable Development Suite

Kollmorgen Automation Suite[™] simplifies and accelerates development through a unified system of software, hardware, and collaborative co-engineering. This scalable solution provides a fully integrated development environment for any application, whether you're programming a single axis of motion, a multi-axis AKD PDMM[™] system, or a PAC-based system up to 128 axes. Kollmorgen Automation Suite has been proven to:

- Improve product throughput by up to 25% with industry-leading motion bandwidth
- Reduce scrap by up to 50% with world-class servo accuracy, seamless power-failure recovery and highly dynamic changeovers
- Increase precision for better quality, reduced waste and less downtime using EtherCAT—the field bus with motion bus performance
- Enable more adaptable, sustainable and innovative machines that measurably improve marketability and profitability

A Single Family of Servo Drives

Kollmorgen AKD[™] servo drives deliver cutting-edge performance in a compact footprint. From basic torque-and-velocity applications, to indexing, to multi-axis programmable motion, these feature-rich drives offer:

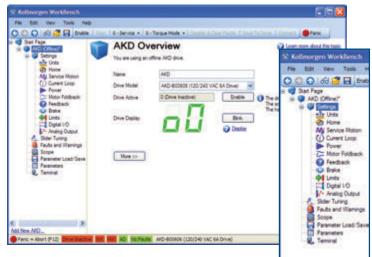
- Plug-and-play compatibility with your servomotor
- All the advantages of Kollmorgen's breadth of motor platforms including AKM[™], CDDR[™], and other direct-drive technologies
- The fastest velocity and position loop updates
- Full-frequency autotuning for perfect motion across the performance spectrum
- Real-time feedback from a wide variety of devices

Our Best Drive and Automation Solution in a Single Package

The new AKD PDMM programmable drive, multi-axis master combines our AKD drive platform with the full feature set of Kollmorgen Automation Suite in a single package —providing complete machine and motion control for up to eight axes or more.

You need only one development suite and one drive family for all your projects. And you can rely on one source for all the motion components and co-engineering expertise you need to build a better machine.

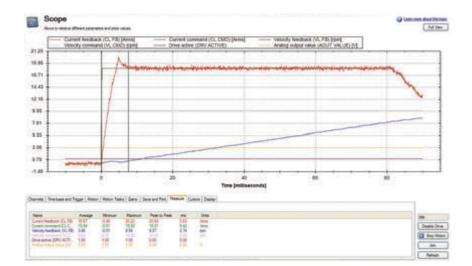
With AKD PDMM, the best in machine engineering has never been easier, faster or more cost-effective.


AKD Options and Accessories

Kollmorgen WorkBench

Our simple Graphical User Interface (GUI), Kollmorgen WorkBench, is designed to expedite and streamline the user's experience with the AKD servo drive. From easy application selection and reduced math, to a sleek six-channel scope; the user interface is extremely easy to use. Kollmorgen WorkBench supports intuitive access to the exclusive Performance Servo Tuner (PST) available inside AKD. The patent pending PST makes auto-tuning the AKD high-performance servo drive with world-class Kollmorgen motors very simple.

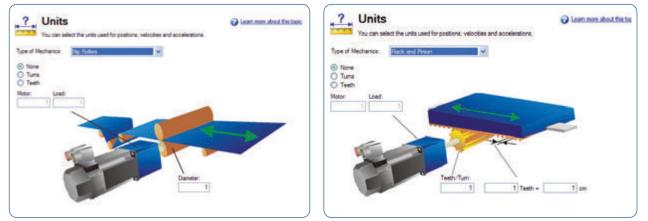
User-Friendly Environment


Logical flow, colorful icons and easy access simplify interactions with the AKD servo drive. The folder structure allows for instant identification and easy navigation.

Sleek Six-Channel "Real-Time" Software Oscilloscope

The easy-to-use AKD servo drive interface has a sleek digital oscilloscope that provides a comfortable environment for users to monitor performance. There are multiple options to share data in the format you prefer at the click of a button.

- Save as an image
- Load to an e-mail
- Print


ŝ

Application Selection

Simplifies set-up by allowing use of machine or application-based units. Nip roller and rack and pinion set-ups shown.

Nip Roller Application Selection

Data-Sharing

The ease-of-sharing continues in the parameters window. Kollmorgen WorkBench provides the user the easy options of printing or emailing the parameter values at the click of a button.

Full Name	Value	Units	Parameter 2	Read/Write	I ^	
Active Disable						
Deceleration during active disable	3000.0	of rpm/s	AD.DEC	read-write		
Time-out	100	00 ms	AD.DISTO	read-write		
State		0 ms	AD STATE	read-only		
Velocity window	120.00	00 rpm	AD.VELTHRESH	read-write		
Time delay after velocity window		6 ma	AD.VELTHRESHTM	read-write		
Analog Input						
Analog input low pass filter cutoff free	5.000.0	0 Hz	AIN.CUTOFF	read-writ		
Analog input signal deadband	0.0	V 00	AIN DEADBAND	read-writ	Drive P	arameter List - Message (Plain Text) 🛛 📃 🗖
Analog input mode	0 - Inactive		AIN MODE	read-writ		
Analog input offset	0.0	V 00	AIN.OFFSET	read-writ	Ele Edit	t Yew Insert Format Tools Actions Help
Analog input signal	0.0	V 00	AIN.VALUE	read-only	Send 2	
Analog Input/Output						
Analog input torgue scale	0.0	AV.	AIO.ISCALE	read-writ		
Analog input velocity scale	0.0	Vmqn 08	AIO.VSCALE	read-writ	То	
Analog Output				1	Cc	
Analog output mode	0 - User Variable		AOUT MODE	read-writ		
Analog output value	0.0	V 00	AOUT.VALUE	read-writ	Bcc	
Bode					Subject:	Drive Parameter List
Current Loop					subject	Drive Parameter Dist
Current command	0.0	A 00	CLICMD	read-only	Attach	DriveParameterList.csv (16 KB) Attachment Options
Current command - user	0.0	A OC	CLCMDU	read-writ	Constantino -	
Current command - D component	0.0	A 00	CLOCMD	read-only		
Current command - user D componen	0.0	A 00	CL DCMDU	read-writ	Drive	Parameter List is attached.

AKD Options and Accessories

AKD Connector Layout

Ethernet Connectivity

- Ethernet-based AKD servo drive provides the user with multiple bus choices
- EtherCAT[®] (DSP402 protocol), Modbus/TCP, SynqNet[®], EtherNet/IP, PROFINET and CANopen[®]
- No option cards are required

Industrial Design

- Rugged circuit design and compact enclosure for space-saving, modern appearance – minimizes electrical noise emission and susceptibility
- Full fault protection
- UL, cUL listed, and CE
- No external line filters needed (480 Vac units) for CE & UL compliance
- Removable screw terminal connectors for easy connections
- DC Bus sharing

Safe-Torque-Off (STO)

(IEC 61800 SIL2)

- Switches off the power stage to ensure personnel safety and prevents an unintended restart of the drive, even in fault condition
- Allows logic and communication to remain on during power stage shut down

Internal Regenerative Braking Resistor

(All powers except 120/240 Vac 3 Arms and 6 Arms)

- Simplifies system components
- Saves overhead of managing external regeneration when internal regeneration is sufficient

Performance Servo Tuner (PST)

- Exclusive patent pending auto-tuner reaches optimized set-up in seconds
- Handles inertia mismatches up to 1000:1
- Industry leading bandwidth under compliant and stiff load conditions, no matter the mechanical bandwidth of the machine

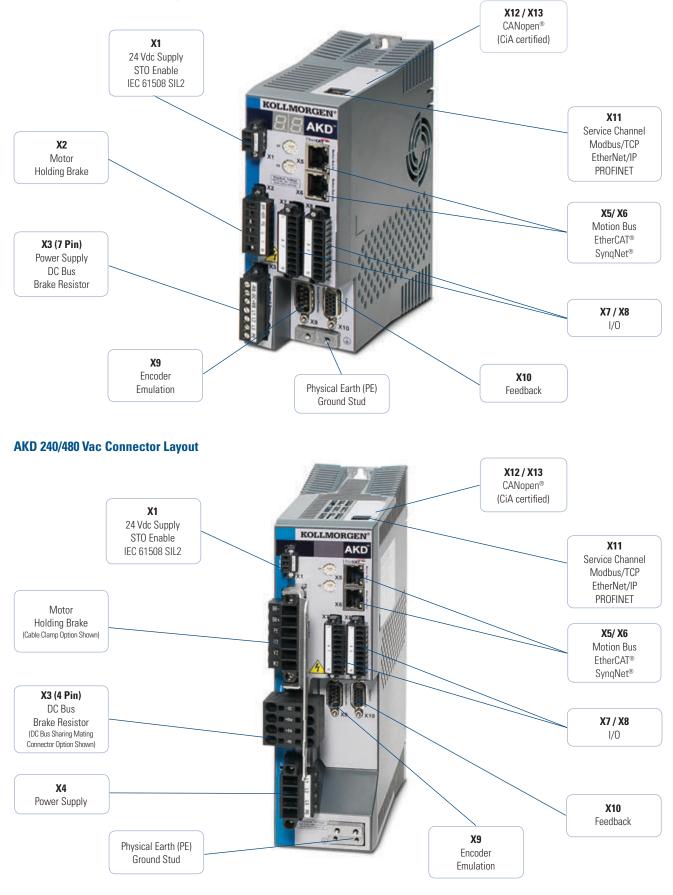
RoHS

Plug-and-Play with Kollmorgen Motors and Actuators

- Electronic motor nameplates allow parameters to automatically load for fast commissioning
- Motion in seconds
- · Custom motor parameters easily entered

I/O (Base Drive)

- 8 digital inputs
- (1 dedicated to enable)
- 2 high-speed digital inputs (maximum time delay of 1.0 μs)
- 3 digital outputs (1 dedicated to fault relay)
- 1 analog input 16 bit
- 1 analog output 16 bit



CRNopen Modbus/TCP

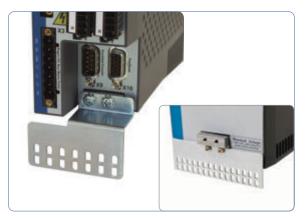
AKD 120/240 Vac Connector Layout

S

AKD Options and Accessories

AKD Feedback & I/O

AKD servo drive is specifically designed with the versatility, communications, and power you need to expand machine performance and increase integration speeds. Motor set-up is plug-and-play and multiple Ethernet connectivity options provide both open and closed protocols. Online troubleshooting and data verification enable faster, bug-proof programming. And a broad power range in a smaller, compact design allows you to use these robust drives with a single interface while experiencing industry-leading, high-performance servo loops.


	AKD Specifications								
Encoder Output or AUX Encoder Input									
Feedback	Smart Feedback Device (SFD), EnDat2.2, 01, BiSS, analog Sine/Cos encoder, incremental encoder, HIPERFACE®, and resolver								
Logic supply	24	Vdc							
	Base drive With I/O expansion								
Digital input (24 Vdc)	8 (1 dedicated to enable)	20 (1 dedicated to enable)							
Digital output (24 Vdc)	3 (1 dedicated to fault relay)	13 (1 dedicated to fault relay)							
Analog input (+/- 10 Vdc, 16-bit)	1	2							
Analog output (+/- 10 Vdc, 16-bit)	1	2							
Programmable inputs	7	19							
Programmable outputs	2	12							
Sink/Source inputs/outputs	Yes	Yes							

Additional AKD Accessories

CANopen Accessories

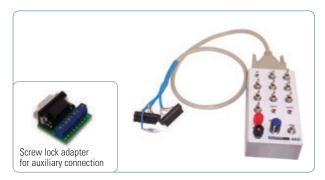
We offer cables, terminators and adaptors for simple integration with CANopen machine networks.

Shielding Solutions

AKD servo drive can be equipped with shielding plates.

Motion Bus and Service Port Cables

We offer industrial shielded PUR cables with RJ45 connections for demanding industrial environments. These cables outperform office cables in EMC resilience, durability, and life.

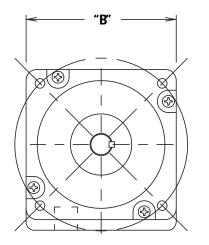

Brake Resistors

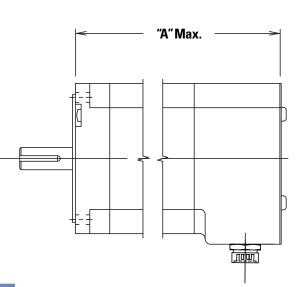
We offer a full line of brake resistors up to 6000 watts. Brake resistors are impedance matched with AKD and are available in many sizes and form factors.

Chokes and Filters

Line filters are offered to improve reliability and to protect the life of the machine in less stable environments. Motor chokes reduce radiated emissions and are recommended for applications with cable lengths >25 meters.

I/O Control Box and Breakout Adapter

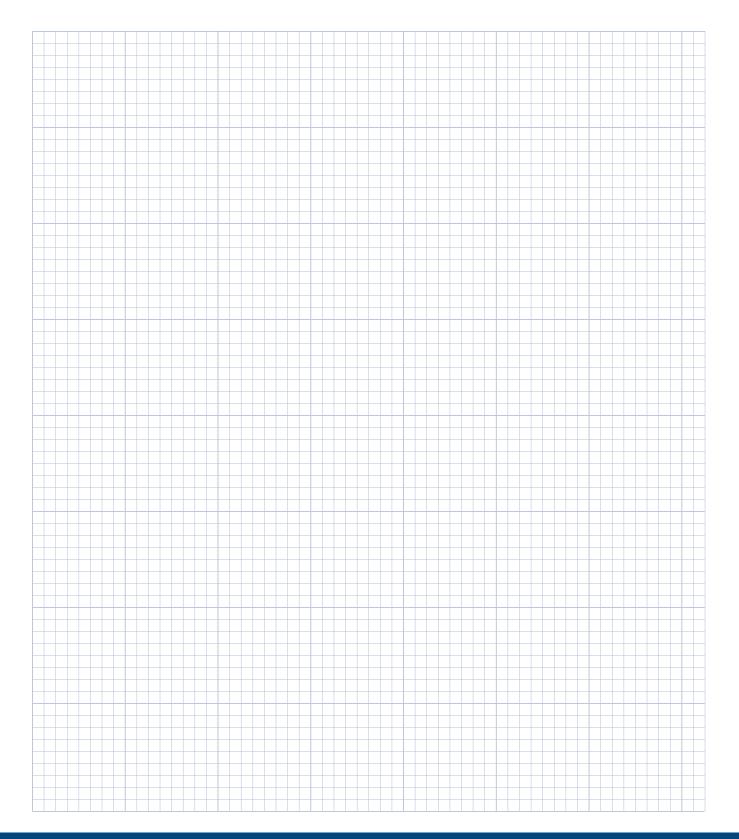

Our I/O Control Box is pre-populated with I/O switches and a power connection for quicker prototyping.


Stepper Motor System Specifications

Motor	System Voltage [Vdc]	Continuous Current [Arms]	Continuous Torque [Ib-in (Nm)]	Nmax. [rpm]	Motor Inertia [lb-in-s² (kg-cm²)]	Motor Weight [lb (kg)]	
CTP12	24	1.0	3.73 (0.422)	1800	6.2E-5 (0.070)	0.75 (0.24)	
GIFIZ	36	1.0	4.02 (0.454)	2400	0.2E-0 (0.070)	0.75 (0.34)	
T22V	160	1.5	17 E /1 00)	3000		2.2.(1.0)	
T22T	320	0.77	17.5 (1.98)	3000	0.000350 (0.395)	2.2 (1.0)	
T31V	160	2.8	40.2 (4 = 4)	2000		E 0 (2 27)	
T31T	320	1.4	40.2 (4.54)	3000	0.00127 (1.43)	5.0 (2.27)	
T32V	160	3.2	747 (0 44)	2000	0 00227 /2 60)	0 42 (2 02)	
T32T	320	1.6	74.7 (8.44)	3000	0.00237 (2.68)	8.42 (3.82)	
T41T	320	2.8	101 (11.4)	3000	0.00489 (5.52)	11.0 (5.0)	

T22, T31, T32, T41 Stepper System Performance with P70360

Typical Stepper Motor Frame Dimensions

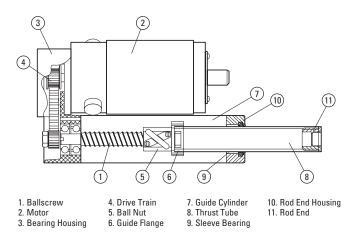


Model	Square dimension "B" [in (mm)]	"A" [in (mm)]
CTP12	1.68 (42.67)	1.90 (48.3)
T22	2.240 (56.90)	3.60 (77.72)
T31	3.38 (85.85)	4.44 (112.8)
T32	3.38 (85.85)	5.96 (151.4)
T41	4.325 (109.9)	5.20 (132.1)

STEPPER

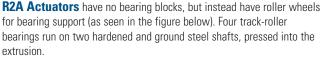
K O L L M O R G E N

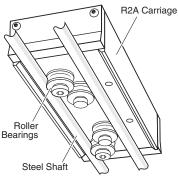
Notes


Linear Positioning

Rod Type or Rodless?

Rod Type electric cylinders are similar in configuration to a hydraulic or pneumatic actuator and are preferred when you need to position an externally supported load, move a load that pivots, retrofit a hydraulic or pneumatic actuator, or have "reach in requirements".


EC and N2 electric cylinders (see the N2 series figure, right) use ballscrews (1) to convert rotary motion into linear motion. The motor (2) is mounted to the bearing housing (3), and the motor's power is transmitted to the screw through a gear, or timing-belt reduction (4). The screw turns and moves the ball nut (5), which is connected to a guide flange (6). The guide flange keeps the nut from rotating, by sliding through the guide cylinder (7). The thrust tube (8) is threaded on to the nut, and is supported by the sleeve bearing (9) in the rod-end housing (10). The load is attached to the rod end (11).


N2 Series

Rodless actuators have a bearing support system and a carriage that runs the length of the body. This type of actuator is preferred when you need to save space by eliminating external guides and ways, when high speed and long stroke lengths are needed, when the shortest overall work envelope is needed, or when a multi axis Cartesian System is required.

R2A, R3 and R4 rodless actuators use a <u>ballscrew</u> or a <u>transport belt</u> to convert the motor's power to linear thrust. Pictured below is a beltdrive positioner. As in the EC and N2 electric cylinders, there is a timing belt, or gear reduction (1) between the motor (2) and the driven pulley (3). The transport belt (4) runs over two pulleys and each end is connected to the connector bracket (5). The connector bracket is connected to two bearing blocks (6) that ride on the recirculating ball-bearing rail (7) that is mounted in the guide cylinder (8). The carriage (9) is mounted to the connector bracket lifts the seal strip (10) runs between them. The connector bracket lifts the seal as the carriage moves, while roller wheels (11) in the carriage push the seal back in place.

(10)(4) (11 (3) \boxtimes 0 👹 0 \bigcirc _____ ____ ____ 8 6 0 1. Drive Train 5. Connector Bracket 9. Carriage 6. Bearing Blocks 10. Seal Strip 2. Motor 3. Transport Pulley 7. Linear Rail 11. Seal Roller 4. Transport Belt 8. Guide Cylinder

Linear Actuation Operation

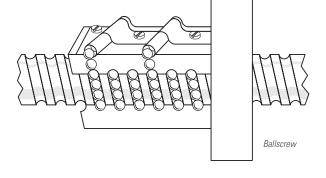
Rotary to Linear Conversion

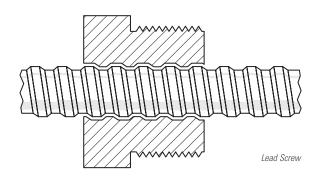
Linear motion systems driven by rotating electric motors commonly employ one of three rotary-to-linear conversion systems: **ballscrew**, **belt drive**, **or lead screw**.

Ball / Lead Screw

Screw-drive mechanisms, whether lead screw or ballscrew provide high thrust (to thousands of pounds), but are often limited by critical speed, maximum recirculation speed of ball nut circuits, or sliding friction of lead nut systems.

Ballscrew


The majority of linear motion applications convert motor torque to linear thrust using ballscrews due to their ability to convert more than 90% of the motor's torque to thrust. As seen below the ballnut uses one or more circuits of recirculating steel balls which roll between the nut and ballscrew threads. Ballscrews provide an effective solution when the application requires:


- High efficiency low friction
- High duty cycle (> 50%)
- · Long life low wear

Lead Screw

The lead screw uses a plastic or bronze solid nut that slides along the threads of the screw, much like an ordinary nut and bolt. Since there are no rolling elements between the nut and the lead screw, lead screws yield only 30-50% of the motor's energy to driving the load. The remaining energy is lost to friction and dissipated as heat. This heat generation limits the duty cycle to less than 50%. A great benefit of the lead screw is its ability to hold a vertical load in a power-off situation (refer to the Backdrive specifications for lead screw positioners). The lead screw is a good choice for applications requiring:

- Low speeds
- Low duty cycles (50%)
- The ability to hold position while motor power is off

Electric Cylinder Vs. Hydraulics & Pneumatics

Linear Technology Comparison

For many applications, hydraulic or pneumatic linear cylinders are a better choice than their electromechanical alternatives. For example, when extremely heavy loads (>25,000 N [5,620 lb]) must be moved, hydraulic cylinders are usually the best solution.

Or, when very light loads must be moved rapidly and repeatedly from one fixed location to another fixed location, pneumatic cylinders may be the most economical solution.

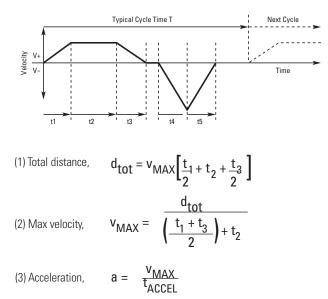
	Kollmorgen Electric Cylinders	Hydraulic Cylinders	Pneumatic Cylinders
Installation	All electric operation requires simple wiring; directly compatible with other electronic controls.	Requires expensive plumbing, filtering, pumps, etc. Must pay close attention to compatibility of components.	Requires expensive plumbing, filtering, pumps, etc.
Precise Positioning	Positioning [±0.0005 in]), rigid multi-stop capabilities. and precise electro-hydraulic valving to sive position s		Most difficult to achieve. Requires expen- sive position sensing and precise valving to implement; has tendency to creep.
Control	allow automatic operation of complex moti- allow automatic operation of complex moti-		Inherently non-linear, compressible power source severely complicates servo control. Compressibility can be an advantage in open loop operation.
Speed	Smooth, variable speed capabilities from 0.5 to 1330 mm/sec [0.02 to 52.5 in/sec].	Difficult to control accurately. Varies with temperature and wear. Stick slip can be a problem.	More susceptible to stick slip and varying load. Well-suited for high speed applica- tions to 5 m/sec [200 in/sec].
Reliability	Repeatable, reproducible performance throughout useful life of product; little maintenance required.	Very contamination sensitive. Fluid sources require maintenance. Seals are prone to leak. Good reliability with diligent maintenance.	Very contamination sensitive. Air sources require proper filtration. Good reliability, but usually many system components are involved.
PowerUp to 25,000 N [5620 lb], 3 kW [4 hp].Virtually unlin powerful.		Virtually unlimited force. Most powerful.	Up to 5,000 lb. Typically used below 0.75 kw [1 hp].
Cycle Life	Up to millions of cycles at rated load. Easy to predict.	Dependent on design and seal wear; usually good.	Dependent on seal wear, usually good.
Environment	Standard models rated for -20° to 160° F. Inherently clean and energy efficient.	Temperature extremes can be a major problem. Seals are prone to leak. Waste disposal is increasingly proble- matic.	Temperature extremes can be a major pro- blem. Seals prone to leak. Air-borne oil can be a problem.
Safe Load Holding	Lead screw units are self-locking if power fails. Fail-safe brakes available for ball-screw models.	Complex back-up safety devices must be used.	Complex back-up safety devices must be used.
Cost	Moderate initial cost; very low operating cost.	Components often cost less, but instal- lation and maintenance are increased. Hydraulic power unit cost is high if not pre-existing. Most economical above 7.5 kw [10 hp].	Components often cost less, but installation and maintenance are increased. Most cost- effective for low power, simple point-to- point applications.

Automation Control

But when simplicity, flexibility, programmability, accuracy and reliability are important and loads are within the capacity of the technology, electromechanical solutions often are the most desirable.

Further, electromechanical systems are inherently more compatible with today's automation controls.

	ELECTRIC CYLINDER	PNEUMATIC ACTUATORS	HYDRAULIC ACTUATORS
OPERATES WITHOUT Compressed Air	YES	NO	YES
OPERATES WITHOUT COMPRESSED FLUID	YES	YES	NO
OPERATES WITHOUT VALVES, PIPES OR HOSES	YES	NO	NO
SMOOTH, CONTROLLABLE SPEED	YES	NO	PARTIAL
HOLDS POSITION WITHOUT POWER	YES	NO	PARTIAL
OPERATES IN TEMPERATURE EXTREMES	YES	NO	NO
ACCURATE MID-STROKE POSITIONING	YES	NO	NO
GUIDED AGAINST ROTATION	YES	NO	NO
HIGH CYCLE CAPABILITY	YES	YES	LIMITED
CAN BE OPERATED WITHOUT LIMIT SWITCHES	YES	YES	YES



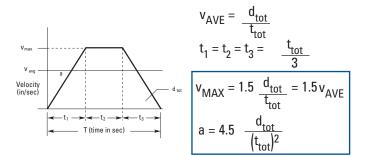
Linear Sizing Calculations

Move Profile

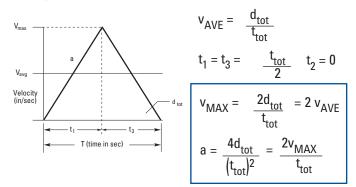
Rotary and linear actuator selection begins with the calculation of speed, thrust and torque requirements. In order to determine the torque required, the acceleration of the mass being moved must be calculated. A **"move profile"**, or a **plot of load velocity vs. time**, is sketched in order to simplify the **peak acceleration** and **peak velocity** calculations.

Typical Machine Cycle

The figure above is an example of a typical machine cycle, and is made up of two Move Profiles; the first is an example of a **trapezoidal profile**, while the second is a **triangular profile**. The horizontal axis represents time and the vertical axis represents velocity (linear or rotary). The load accelerates for a time (t_1) , has a constant velocity or slew section (t_2) , and decelerates to a stop (t_3) . There it dwells for a time, accelerates in the negative direction (t_4) , and decelerates back to a stop (t_5) without a slew region. The equations needed to calculate Peak Velocity and Acceleration for a general trapezoidal profile are shown in the figure. A triangular profile can be thought of as a trapezoidal profile where $t_2 = 0$. The Move Profile sketch contains some important information:


- Peak acceleration is the steepest slope on the curve, in this case during t_4 or $t_{\rm 5^{\rm .}}$
- **Maximum velocity** is at the highest or lowest point over the entire curve, here at the peak between t₄ and t₅.
- **Distance** is equal to the area under the curve. Area above the time axis represents distance covered in the positive direction, while negative distance falls below this axis. The distance equation (1) is just a sum of the areas of two triangles and a rectangle.

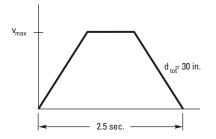
Trapezoidal and Triangular Profiles


A couple of assumptions can greatly simplify the general equations. For the Trapezoidal profile we assume $t_1 = t_2 = t_3$, and for the Triangular we assume $t_3 = t_4$. Substituting these assumptions into equations (2) and (3) yields the equations shown in the figure below.

For a given distance (or area), a triangular profile requires lower acceleration than the trapezoidal profile. This results in a lower thrust requirement, and in turn, a smaller motor. On the other hand, the triangular profile's peak speed is greater than the trapezoidal, so for applications where the motor speed is a limiting factor, a trapezoidal profile is usually a better choice.

Trapezoidal Move Profile

Triangular Move Profile



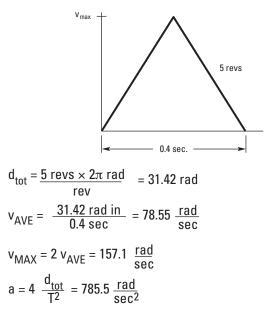
Move Profile

Example 1

Calculate the peak acceleration and velocity for an object that needs to move 30 inches in 2.5 seconds. Assume a Trapezoidal Profile.

Solution

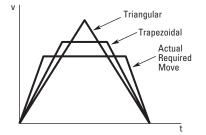
$$v_{AVE} = \frac{30 \text{ in}}{2.5 \text{ sec}} = 12 \text{ in/sec}$$


 $v_{MAX} = 1.5 \quad \frac{d_{tot}}{t_{tot}} = 18 \text{ in/sec}$

$$a = 4.5 \quad \frac{d_{tot}}{(t_{tot})^2} = 21.6 \text{ in/sec}^2$$

Example 2

Calculate, in radians/sec, the peak acceleration and velocity for an cylinder that needs to move 5 revolutions in 0.4 seconds. Assume a Triangular Profile.


Solution

Example 3

This is an example of a case when triangular and trapezoidal move profiles are not adequate approximations. Assume a maximum positioner speed is 6 inches/sec. Sketch a move profile that will complete a 10 inch move in 2 seconds. What is the minimum allowable acceleration rate in inches/sec²?

Solution

Triangular

$$v_{AVE} = \frac{10 \text{ in}}{2 \text{ sec}} = 5 \text{ in/sec}$$

 $v_{MAX} = 2 \times v_{AVE} = 10$ in/sec ($v_{MAX} > 6$ in/sec – too fast)

Trapezoidal

 $v_{MAX} = 1.5 \times v_{AVE} = 7.5$ in/sec ($v_{MAX} > 6$ in/sec – too fast) These are too fast, so we need to find t_1 as follows:

Required Profile

$$d_{tot} = v_{MAX} \left(\frac{(t_1 + t_3)}{2} + t_2 \right)$$

$$\frac{d}{v_{MAX}} = \left(\frac{(t_{tot} - t_2)}{2} \right) + t_2 = \frac{t_{tot}}{2} + \frac{t_2}{2}$$

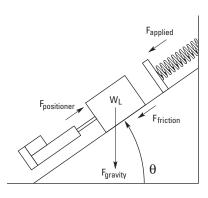
solving for t₂,

$$t_{2} = \left(\frac{d_{tot}}{v_{MAX}} - \frac{t_{tot}}{2}\right) \times 2 = \left(\frac{10 \text{ in}}{6 \text{ in/sec}} - \frac{2 \text{ sec}}{2}\right) \times 2$$
$$t_{2} = 1.33 \text{ sec}$$

Now assume $t_1 = t_3$, so

$$t_1 = (t_{tot} - t_2)/2 = 0.33$$
 sec.

Finally, calculate acceleration


$$a = \frac{v_{MAX}}{t_1} = \frac{6 \text{ in/sec}}{0.33 \text{ sec}} = 18 \frac{\text{in}}{\text{sec}^2}$$

Linear Sizing Calculations

Thrust Calculation

The thrust required to move a mass a given distance within a given time may be calculated by summing all of the forces that act on the mass. These forces generally fall within the following four categories:

- **Gravity** is important when something is being raised or lowered in a system. Lifting a mass vertically is one example, as is sliding something on an incline.
- Friction forces exist in almost all systems and must be considered.
- **Applied forces** come from springs, other actuators, magnets, etc., and are the forces that act on the mass other than friction, gravity, and the actuator's thrust. The spring shown in the figure below is an example of an Applied force.
- Actuator thrust is the required force, and is what we need to determine.

The figure above shows a general case where the force required by the actuator must be determined. All of the above forces are included, and it is important to note that all of these forces can change over time, so the thrust must be calculated for each section of the move profile. The worst case thrust and speed required should be used to pick the appropriate actuator. All of these forces added up (Σ) must be equal to mass × acceleration, or:

$$\Sigma F = m \times a, or,$$
 (1)

$$F_{actuator} - F_{applied} - F_{friction} - F_{gravity} = ma = \left(\frac{W_t}{g}\right)a$$
 (2)

$$F_{actuator} = \left(\frac{W_{t}}{g}\right)a + F_{applied} + F_{friction} + F_{gravity}$$
(3)

where
$$W_t = W_{load} + W_{actuator}$$
 (4)
 $F_{friction} = \mu W_L \cos\theta$, and
 $F_{gravity} = W_L \sin\theta$

 $W_{actuator}$ becomes important when the acceleration force, $(W_t/g)a,$ is a significant part of the thrust calculation. For simplicity, start by neglecting this weight, and calculate the required thrust without it. After selecting an actuator, add its mass to the mass of the load and recalculate. To make these equations clear, lets begin with an example.

Example 1

We would like to move a 200 lb weight a distance of 10 inches in 2 seconds. The mass slides up and incline with a friction coefficient of 0.1 at an angle of 45°. There is a spring that will be in contact with the mass during the last 0.5 inch of travel and has a spring rate of 100 lb/in. What is the maximum thrust and velocity?

Solution

We need to look at the thrust requirement during each part of the move, and find the points of maximum thrust and maximum speed. Choosing a trapezoidal profile we calculate that v_{max} is 7.5 in/sec and the peak acceleration is 11.25 in/sec² (see Move Profile Section).

Acceleration Section:

Ma	= 200 lb/386 in/sec ² \times 11.25 in/sec ² = 5.83 lb
F _{applied} F _{friction}	
F _{gravity} F _{total} Slew Secti	= 161 lb

Siew Section.

Ma = 0 lb (since a=0) r ... = 0 lb

- $F_{\text{friction}} = [200 \text{ lb} \times \cos (45)] \times 0.1 = 14.14 \text{ lb}$
- $F_{qravity} = 200 \text{ lb} \times \sin(45) = 141.4 \text{ lb}$
- $F_{total} = 156 \text{ lb}$

Deceleration Section:

- Ma = 200 lb/386 in/sec² × -11.25 in/sec² = -5.83 lb
- $F_{applied} = K \times x = 0.5 \text{ in } \times 100 \text{ lb/in } =50 \text{ lb}$ (worst case)

$$F_{\text{friction}} = [200 \text{ lb} \times \cos (45)] \times 0.1 = 14.14 \text{ lb}$$

 $F_{gravity} = 200 \text{ lb} \times \sin(45) = 141.4 \text{ lb}$

 $F_{total} = 200 \text{ lb}$

So the worst case required thrust is <u>200 lb.</u> And the worst case velocity is <u>7.5 in/sec.</u>

Thrust Calculation

Actuator Mass

In applications where the acceleration force, $(W_t/g)a$, is a significant part of the required thrust, the actuator mass must be considered in the thrust calculation. After an actuator is chosen, the actuator weight (linear inertia), $W_{actuator}$, is added to the weight of the load. $W_{actuator}$ can be determined using the tables and equation in the actuator data section. To illustrate, we will use the previous example.

- The first step is to pick a linear actuator with the above thrust and speed capability. One such actuator is an EC3-AKM42-20-16B-300. This is an EC3 Electric Cylinder with a AKM42 motor, a 2:1 gear reduction, a 16 mm lead ballscrew, and a 300 mm stroke.
- 2. The next step is to look up the effective Actuator Linear Inertia in the tables located in the particular actuator section (do not include the "load" term in the equation). An entry from this table can be seen in the table below. The AKM42 motor inertia is 0.0013 in-lb-sec². The effective actuator weight, calculated from the table is 297 lb.
- The final step is to add this weight to the weight of the load, W_L, and recalculate the peak thrust required for each section of the move profile (do not add this weight to the gravity or friction terms):

Acceleration Section:

- Ma = 447 lb/386 in/sec² \times 11.25 in/sec²
 - = 13.03 lb

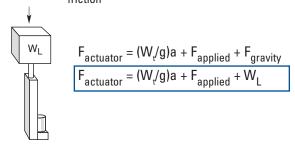
 $F_{total} = 169 \text{ lb}$

Slew Section:

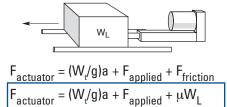
Ma = 0 lb (since a=0)

Deceleration Section:

Ma = 447 lb/386 in/sec² × -11.25 in/sec²)

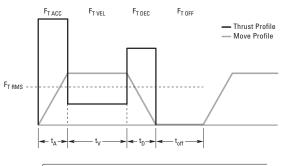

= -13.03 lb

F_{total} = 193 lb


We can see from this calculation that the addition of this extra "acceleration weight" increases the thrust required during acceleration, but reduces the peak thrust required during deceleration. The EC3-AKM42-20-16B-300 will work in the application.

Vertical and Horizontal Cases

In a vertical system, θ is 90°, sin90 = 1, and $F_{gravity}$ is equal to $W_L.$ Since cos90 = 0, $F_{friction}$ = 0.



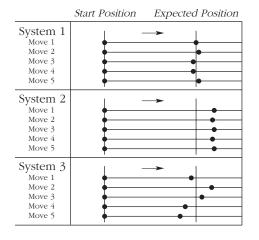
In a horizontal system, sin θ = 0, so gravity would play no part (Fgravity = 0), and cos θ =1, so Ffriction would be equal to μW_L , or 50 lb.

RMS Thrust

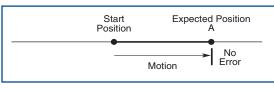
For all Servomotor applications, the RMS Thrust needs to be calculated. This thrust must fall within the continuous duty region of the linear actuator. Use the following equation when calculating RMS Thrust:

$$F_{T RMS} = \sqrt{\frac{(F_{T ACC})^2 t_a + (F_{T VEL})^2 t_v + (F_{T DEC})^2 t_d + (F_{T OFF})^2 t_{off}}{t_a + t_v + t_d + t_{off}}}$$

EC Series Inertia									
Rotary Inertia (Reflected to Motor) = A + B* (Stroke, in) + C * (Load, Ib)									
Model		Reduction	Screw	Α	В	C			
EC 3 Series	Ratio	Туре	Dia x Lead (mm)	lb-in sec ²	lb-in sec ² / in	lb-in sec ² / lb	AKM42 Mechanic	al Specifications	
EC310-16B	1:1			1.188 E-03	1.176 E-05	2.604 E-05	Motor Inertia	0.0013 lb-in-sec ²	
EC315-16B	1.5:1	Belt/pulley		7.435 E-04	5.228 E-06	1.157 E-05	(based on resolver)	0.0013 ID-III-Sec-	
EC320-16B	2:1		16 x 16	16 x 16	4.779 E-04	2.765 E-06	6.121 E-06		
EC350-16B	5:1	Holiool goor	Haliaal goor		2.280 E-04	4.635 E-07	1.026 E-06		
EC370-16B	7:1	Helical gear		1.975 E-04	2.401 E-07	5.314 E-07			


Linear Motion Terminology

Linear Actuator Precision


Parameter	Definition	Dominating Factors		
Absolute Accuracy	The maximum error between expected and actual position.	 Accuracy of the motor/drive system Screw pitch error (lead accuracy) System backlash (drive train, screw and nut assembly) 		
Repeatability	The ability of a positioning system to return to a location during operation when approaching from the same direction, at the same speed and deceleration rate.	 Angular repeatability of the motor/drive system System friction Changes in load, speed, and deceleration Angular resolution of the motor/drive system 		
Resolution	The smallest positioning increment achievable. In digital control systems, resolution is the smallest specifiable position increment.	Drive Train ReductionScrew PitchLeadscrew Assembly wear		
Backlash	The amount of play (lost motion) between a set of moveable parts.	Drive train wearSpaces between moving parts		

Accuracy and Repeatability

Assume three linear positioning systems each attempt five moves from an absolute zero position to absolute position "A". The individual end positions of each move are charted on a linear scale below to demonstrate their accuracy and repeatability by displaying their proximities to the expected position.

Ideal System

Degree of Accuracy	Degree of Repeatability	Comment
High	High	System 1 is both accurate and repeatable, the end positions are tightly grouped together and are close to the expected position.
Low	High	System 2 is inaccurate but repeatable, the end positions are tightly grouped around a point but are not close to the expected position.
Low	Low	System 3 is neither accurate nor repeatable, the end positions are not tightly grouped and are not close to the expected position.

LINEAR

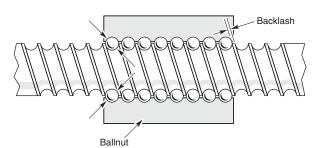
MOTION

TERMINOLOGY

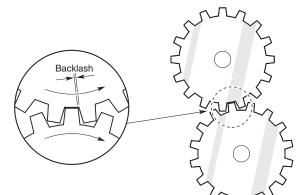
Linear Actuator Precision

Backlash

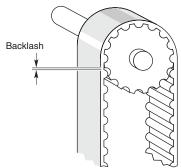
The clearance between elements in a drive train or leadscrew assembly which produces a mechanical "dead band" or "dead space" when changing directions, is known as the **backlash** in a system.

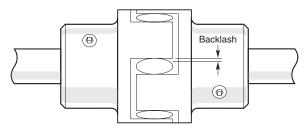

In most mechanical systems, some degree of backlash is necessary to reduce friction and wear. In a Kollmorgen Linear Actuator System, system backlash will typically be 0.010 - 0.015 inches. Usually 0.006 - 0.008" is attributed to the ballscrew / lead screw assembly. For ballscrews this will remain constant throughout the life of a cylinder, while for lead screws it will increase with wear.

Reducing the Effects of Backlash


- 1. Approach a stop position from the same direction.
- 2. Apply a constant linear force on the cylinder thrust tube or carriage. This is done automatically for cylinders used in vertical orientations with a backdriving load.
- 3. For programmable positioning devices it is possible to program out backlash by specifying a small incremental move (enough to take out the backlash) prior to making your normal moves in a particular direction.
- Use a preloaded nut on a ballscrew to counteract the backlash. Contact Kollmorgen about the precision ground screw option which reduces backlash in the drive nut.
- 5. An inline positioner with the motor directly coupled to the ballscrew has less backlash than parallel or reverse parallel units which utilize a gear train or drive belt/pulley.

Primary Sources of Backlash


1. Ballscrew/Lead screw Assembly

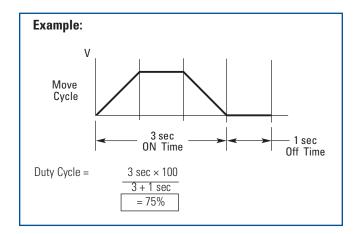


3. Timing Belt/Pulley

4. Coupling

Linear Motion Terminology

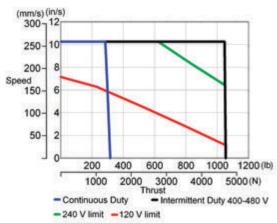
Duty Cycle


Duty Cycle is the ratio of motor-on time to total cycle

time and is used to determine the acceptable level of running time so that the thermal limits of the motor or positioner components are not exceeded. Inefficiencies cause a temperature rise in a system, and when the temperature reaches a critical point, components fail. Letting the system to rest idle during the cycle allows these system components to cool. Duty Cycle is limited by lead screw and motor thermal limits. Use the following equation and example to determine Duty Cycle:

Duty Cycle =
$$\frac{ON TIME}{ON TIME + OFF TIME} \times 100$$

Cylinders with **lead screws** have sliding friction surfaces and are limited to a maximum 50% duty cycle regardless of motor capability. The friction in the lead screw causes rapid heating, and continuous operation is likely to end in a ruined nut or screw. For positioner with **ballscrews** the motor is the only duty-cycle limitation when used within the listed speed vs. thrust curves in the catalog.



Motor Type

Electric motors incur heat losses via a number of paths, namely, friction, ohmic (I²R) losses in copper windings, hysteresis and eddy current induction in magnetic core materials, and proximity and/or skin effect in windings. As a result duty cycle can be limited by the motor winding temperature limitations.

Servomotors

Linear Positioners using AKM series motors must have their peak (F_{peak}) and continuous (F_{RMS}) thrust requirements determined to establish their safe operation within an application. F_{RMS} can be determined using the RMS Thrust equation in the Thrust Calculation section. Plotting F_{RMS} on the positioner Speed vs. Thrust curve indicates the allowable limit. For ballscrew positioners, F_{RMS} must fall within the continuous duty region, while for lead screws it must also fall within the continuous limit and not exceed a 50% duty cycle within that limit. F_{peak} must fall within remaining operating envelope. The speed vs. thrust curve below is an example of proper servo electric cylinder sizing.

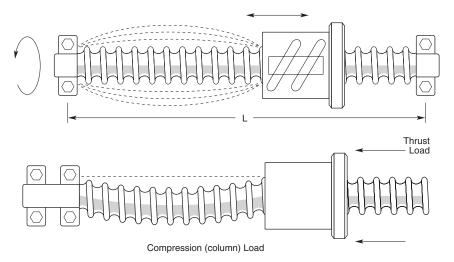
EC3-AKM23D-xxx-15-05B/ AKD (3 A)

Critical Speed and Column Loading

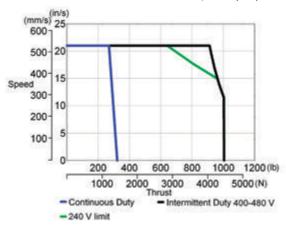
Critical Speed

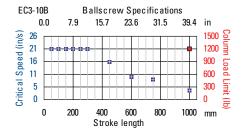
All ballscrew systems have a rotational speed limit where harmonic vibrations occur. With Kollmorgen cylinders, this limit is a function of unsupported ballscrew length. Operation beyond this critical speed will cause the ballscrew to vibrate (whip violently) eventually bending or warping the screw.

Column Strength


All ballscrews have a maximum column loading limit which causes the screw to compress as load increases. In Kollmorgen cylinders this limit is a function of unsupported leadscrew length. Exceeding this limit will cause the ballscrew to buckle and become permanently damaged.

Determining the Limits


Critical Speed and Column Loading information for each screw type (i.e. 2B, 5A, 8A, 5B ...) can be found at the bottom of each Performance Curve page for that particular linear actuator size.


Example

Find the Column Load and Critical Speed limits for an EC3-AKM42G-xxx-10-10B to the right. Reading off the chart, the column loading limit exceeds this system's performance envelope for all stroke lengths. The critical speed limit will begin interfering with the intermittent envelope for stroke lengths greater than 300 mm. The usable speed/ thrust is restricted to less than these values as seen in the modified speed vs. thrust curve.

EC3-AKM42G-xxx-10-10B/ AKD (6 A)

Environmental Considerations

Environmental conditions are an important design consideration when selecting a Kollmorgen Linear Actuator. Kollmorgen units are self-contained systems which are protected from "direct contact" with harsh environments by an aluminum housing with a durable anodized and epoxy coated surface finish. However, extreme conditions can have an adverse effect on cylinder operation and life. Factors such as extreme temperature, liquids or abrasive contaminants (gaining internal access) can impede performance and cause premature wear of mechanical parts. Review the information below when sizing your application to choose appropriate options or protective measures.

Rod Type

Temperature

- N2 electric cylinders are rated for use between 0 and 60°C (32 to 140°F).
- EC electric cylinders are rated for use between -30 and 70°C (-22 to 158°F)

Particle and Liquid Contaminants

- N2 series electric cylinders are protected against dust but are not protected against direct water (or any liquid) contact. Liquid or moisture can gain access into the housing, eventually corroding internal components.
- EC electric cylinders are sealed and gasketed and are rated to IP54. They are protected against dust and light water sprays and splashing.

Protective Boot Option

The PB option is available for EC electric cylinders and increases the positioner's resistance to liquids. The diagram to the right shows a typical installation of an EC with the PB option. This option protects the actuator to IP65. Note that some motor options are not protected to this level. The PB option is not available with R-series Rodless positioners.

Custom Environmental Options

Kollmorgen has over 30 years experience designing custom linear actuators. We have designed fully encapsulated linear actuators for Corrosive, Food Processing, and Washdown environments, and have experience designing for Cleanroom compatible environments. Call Kollmorgen for more information regarding Custom environmental options.

EC Electric Cylinder Thrust Tube Protective Boot

Primary Environmental Factors

- Temperature
- Liquid contaminants
- Particle contaminants

Introduction to Motion Control

Many different components are used in a variety of combinations to create a complete motion control or positioning system. Kollmorgen offers the broadest range of products spanning the complete spectrum from mechanical linear positioners to microstepping and brushless servo drives to programmable motion controllers. A successful application depends on choosing the right combination of positioner, motor, drive, and control technology. More than one technology may meet the requirements of your application. In this case, factors such as performance, cost, flexibility, and simplicity may determine your selection.

Glossary of Motion Control Terminology

Absolute Move

A move referenced from a fixed absolute zero position.

Acceleration

The change in velocity as a function of time, going from a lower speed to a higher speed.

Accuracy

An absolute measurement defining the difference between expected and actual position.

Lead Screw

A screw which uses a threaded screw design with sliding surfaces between the screw and nut.

Backdrive

Tendency of a cylinder to creep out of its set position due to an applied load or force.

Backlash

The amount of play (lost motion) between a set of moveable parts when changing the direction of travel. Typically seen in drive trains, ball/lead screws, & bearings.

Ball screw

A screw assembly which uses a ball nut which houses one or more circuits of recirculating steel balls which roll between the nut and screw.

Bearing

A support device which allows a smooth, low friction motion between two surfaces loaded against each other.

Bushing

A cylindrical metal sleeve inserted into a machine part to reduce friction between moving parts.

Closed Loop

A positioning system which employs feedback information to regulate the output response.

Cogging

Motor torque variations which occur at low speeds due to a weak magnetic field.

Critical Speed

Rotational speed of a ball screw at which vibrations (whipping) will occur.

Current

The flow of charge through a conductor.

Cycle

One complete extension and retraction of a positioner.

Deceleration

The change in velocity as a function of time, going from a higher speed to a lower speed.

Drive Ratio

The ratio of motor revolutions per ball/lead screws revolution.

Drive Train

The arrangement by which the motor is coupled to the ball/lead screws. Typically provided by gears, timing belt/pulley or direct coupling.

Duty Cycle

The ratio of motor on time and total cycle time within a given cycle of operation.

Duty
Cycle (%) =
$$\frac{\text{Motor ON Time}}{\text{Total Cycle Time}}$$
 X 100

Dwell Time

Time within a move cycle where no motion occurs.

Efficiency

Ratio of output power vs. input power.

Electric Cylinder

A self contained system which converts rotary motion (from a motor) to linear motion.

Encoder

An electromechanical device which produces discrete electrical pulses directly related to the angular position of the input shaft, providing high resolution feedback data on position, velocity, and direction.

Force

The action of one body on another which tends to change the state of motion of that body. Typically described in terms of magnitude, direction, and point of application.

Friction

The resistance to motion of two surfaces that touch.

Helical Gear

Gears with teeth that spiral around the gear.

Incremental Move

A move referenced from the current set position.

Inertia

Property of an object that resists a change in motion. It is dependent on the mass and shape of the object. The greater an object's mass, the greater its inertia, and the more force is necessary to accelerate and decelerate.

Lead

The linear distance a nut will travel with one revolution of the Ball / Lead Screw.

Screw Assembly

Device which converts rotary motion to linear motion.

Mass

The quantity of matter that an object contains.

Microprocessor

A device that incorporates many or all functions of a computer in a single integrated circuit. Used to perform calculations and logic required to do motion or process control.

Moment (Load)

Rotational forces applied to a linear axis, typically expressed as yaw, pitch, and roll.

Motion Profile

A method of describing a move operation in terms of time, position, and velocity. Typically velocity is characterized as a function of time or distance which results in a triangular or trapezoidal profile.

Motor

A device which converts electrical energy into mechanical energy.

Non-Volatile Memory

Memory that does not lose information on loss of power.

Open Loop

A positioning system which does not employ feedback information.

Overshoot

The amount by which a parameter being controlled exceeds the desired value. Typically referring to velocity or position in servo systems.

Pitch

The number of revolutions a Ball / Lead Screw must turn for the nut to travel one inch (single start only).

PLC (Programmable Logic Controller)

A programmable device which utilizes "ladder" logic to control a bank of inputs and outputs which are interfaced to external devices.

Power

How much work is done in a specific amount of time.

Repeatability

The ability of a positioning system to return to an exact location during operation (from the same direction with the same load and speed).

Resistance

The opposition to the flow of charge through a conductor.

Resolution

The smallest positioning increment achievable. In digitally programmed systems it is the smallest specifiable positioning increment.

Resonance

Oscillatory behavior in a mechanical body when operated or subjected to a periodic force occurring at its natural frequency.

RS232C

A method of Serial Communication where data is encoded and transmitted on a single line in a sequential time format.

Servomotor

A motor which is used in closed loop systems where feedback is used to control motor velocity, position, or torque.

Stepper Motor

Motor which translates electrical pulses into precise mechanical movements. Through appropriate drive circuitry, controlling the rate and quantity of pulses will control the motor's velocity and position.

Thrust

The measurement of linear force.

Torque

A measure of angular force which produces rotational motion.

Velocity (Speed)

The change in position as a function of time.

Voltage

Difference in electrical potential between two points.

Weight

Force of gravity acting on a body. Determined by multiplying the mass of the object by the acceleration due to gravity.

Conversion Tables

Torque								
AB	dyne-cm	gm-cm	oz-in	kg-cm	lb-in	N-m	lb-ft	kg-m
dyne-cm	1	1.019x10 ⁻²	1.416x10 ⁻⁵	1.0197x10 ⁻⁶	8.850x10 ⁻⁷	10 -7	7.375x10⁻ ⁶	1.019x10 ⁻⁶
gm-cm	980.665	1	1.388x10 ⁻²	10 ⁻³	8.679x10 ⁻⁴	9.806x10 ⁻⁵	7.233x10⁻⁵	10 ⁻⁵
oz-in	7.061x10 ⁴	72.007	1	7.200x10 ⁻²	6.25x10 ⁻²	7.061x10 ⁻³	5.208x10 ⁻³	7.200x10 ⁻⁴
kg-cm	9.806x10 ⁵	1000	13.877	1	0.8679	9.806x10 ⁻²	7.233x10 ⁻²	10 -2
lb-in	1.129x10 ⁶	1.152x10 ³	16	1.152	1	0. 112	8.333x10 ⁻²	1.152x10 ⁻²
N-m	10 ⁷	1.019x10 ⁴	141.612	10.197	8.850	1	0.737	0. 102
lb-ft	1.355x10 ⁷	1.382x10 ⁴	192	13.825	12	1.355	1	0. 138
kg-m	9.806x10 ⁷	10 ⁵	1.388x10 ³	100	86.796	9.806	7.233	1

Inertia (Rotary)

A	gm-cm ²	oz-in²	gm-cm-s²	kg-cm²	lb-in²	oz-in-s²	lb-ft ²	kg-cm-s²	lb-in-s ²	lb-ft-s² or slug-ft-s²
gm-cm ²	1	5.46x10 ⁻²	1.01x10 ⁻³	10 -3	3.417x10 ⁻⁴	1.41x10⁻⁵	2.37x10 ⁻⁶	1.01x10 ⁻⁴	8.85x10 ⁻⁷	7.37x10⁻⁴
oz-in²	182.9	1	0.186	0. 182	0.0625	2.59x10 ⁻³	4.34x10 ⁻⁴	1.86x10 ⁻⁴	1.61x10 ⁻⁴	1.34x10⁻⁵
gm-cm-s ²	980.6	5.36	1	0 .9806	0.335	1.38x10 ⁻²	2.32x10 ⁻³	10 -3	8.67x10 ⁻⁴	7.23x10⁻⁵
kg-cm²	1000	5.46	1.019	1	0.3417	1.41x10 ⁻²	2.37x10 ⁻³	1.019x10 ⁻³	8.85x10 ⁻⁴	7.37x10⁻⁵
lb-in ²	2.92x10 ³	16	2.984	2.925	1	4.14x10 ⁻²	6.94x10 ⁻³	2.96x10 ⁻³	2.59x10 ⁻³	2.15x10 ⁻⁴
oz-in-s²	7.06x10 ⁴	386.08	72.0	70.615	24.13	1	0.1675	7.20x10 ⁻²	6.25x10 ⁻²	5.20x10 ⁻³
lb-ft ²	4.21x10 ⁵	2304	429.71	421.40	144	5.967	1	0. 4297	0.3729	3.10x10 ⁻²
kg-cm-s ²	9.8x10⁵	5.36x10 ³	1000	980.66	335.1	13.887	2.327	1	0.8679	7.23x10 ⁻²
lb-in-s ²	1.129x10 ⁴	6.177x10 ³	1.152x10 ³	1.129x10 ³	386.08	16	2.681	1.152	1	8.33x10 ⁻²
lb-ft-s² or	1.355x10 ⁷	7.41x10⁴	1.38x10 ⁴	1.35x10⁴	4.63x10 ³	192	32.17	13.825	12	1
slug-ft ²										

Angular Velocity

AB	deg/s	rad/s	rpm	rps
deg/s	1	1.75 x 10 ⁻²	0.167	2.78 x 10 -3
rad/s	57.3	1	9.55	0. 159
rpm	6	0. 105	1	1.67 x 10 ⁻²
rps	360	6.28	60	1

Linear Velocity

A	in/min	ft/min	in/sec	ft/sec	mm/sec	m/sec
in/min	1	0. 0833	0.0167	1.39 x10 ⁻³	0.42	4.2 x10 ⁻⁴
ft/min	12	1	0.2	0. 0167	5.08	5.08 x10 ⁻³
in/sec	60	5	1	0.083	25.4	0.0254
ft/sec	720	60	12	1	304.8	0. 3048
cm/sec	23.62	1.97	0.3937	0. 0328	10	0.01
m	2362.2	196.9	39.37	3.281	1000	1

Abbrev	viate	d Terms				Metric	Prefixes	;	
С	=	Celsius	lb(f)	=	pound force	Name	Abbrev	viation	Multiple
cm	=	centimeter	lb(m)	=	pound mass	Giga	G	10 ⁹	1,000,000,000
F	=	Fahrenheit	min	=	minute	Mega	Μ	10 ⁶	1,000,000
ft	=	foot	mm	=	millimeter	Kilo	k	10 ³	1,000
g	=	gravity	m	=	meter	Hecto	h	10 ²	100
gm	=	gram	Ν	=	Newton	deka	da	10 ¹	10
gm(f)	=	gram force	oz(f)	=	ounce force			10 ⁰	1
hp	=	horse power	oz(m)	=	ounce mass	deci	d	10 ⁻¹	.1
in	=	inch	rad	=	radians	centi	С	10 ⁻²	.01
kg	=	kilogram	rpm	=	revs per minute	milli	m	10 ⁻³	.001
kg(f)	=	kilogram force	rps	=	revs per second	micro	μ	10 ⁻⁶	.000001
kw	=	kilowatt	S	=	seconds	nano	n	10 ⁻⁹	.00000001

Conversion Tables

(To convert from A to B, multiply by entry in table)

Length

Longin						
AB	in	ft	micron (µm)	mm	cm	m
in	1	0.0833	2.54x10 ⁴	25.4	2.54	0.0254
ft	12	1	3.048x10⁵	304.8	30.48	0.3048
micron(µm)	3.937x10 ⁻⁷	3.281x10 -6	1	0.001	1.0x10 ⁻⁴	1.0x10 -6
mm	0.03937	0.00328	1000	1	0.1	0.001
cm	0.3937	0.03281	1.0x10 ⁴	10	1	0.01
m	39.37	3.281	1.0x10 ⁶	1000	100	1

Mass

AB	gm	kg	slug	lb(m)	oz(m)	
gm	1	0. 001	6.852x10 ⁻⁵	2.205x10 ⁻³	0.03527	-
kg	1000	1	6.852x10 ⁻²	2.205	35.274	
slug	14590	14.59	1	32.2	514.72	
lb(m)	453.6	0. 45359	0.0311	1	16	
oz(m)	28.35	0. 02835	1.94x10 ⁻³	0. 0625	1	

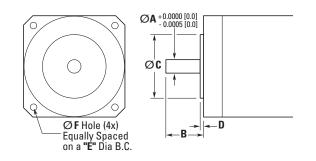
Force

A	lb(f)	Ν	dyne	oz(f)	kg(f)	gm(f)
lb(f)	1	4.4482	4.448 x 10⁵	16	0.45359	453.6
Ν	0.22481	1	100.000	3.5967	0.10197	
dyne	2.248 x10 ⁻⁶	0.00001	1	3.59x10 -⁵		980.6
oz(f)	0.0625	0.27801	2.78x10 ⁴	1	0.02835	28.35
kg(f) gm(f)	2.205 2.205x10 ⁻³	9.80665 	1.02x10 ⁻³	35.274 0.03527	1 0.001	1000 1

Note: $lb(f) = 1slug x 1 ft/s^2$ N = 1kg x 1 m/s² dyne = 1gm x 1 cm/s²

Power

A	Watts	kw	hp(english)	hp (metric)	ft-lb/s	in-lb/s
Watts	1	1 x 10 ⁻³	1.34 x 10 ⁻³	1.36 x 10 ⁻³	0.74	8.88
kw	1000	1	1.34	1.36	738	8880
hp (english)	746	0.746	1	1.01	550	6600
hp(metric)	736	0.736	0.986	1	543	6516
ft-lb/s	1.35	1.36 x 10 ⁻³	1.82 x 10 ⁻³	1.84 x 10 ⁻³	1	12
in-lb/s	0 .113	1.13 x 10⁻⁴	1.52 x 10 ⁻⁴	1.53 x 10⁻⁴	8.3 x 10 ⁻²	1

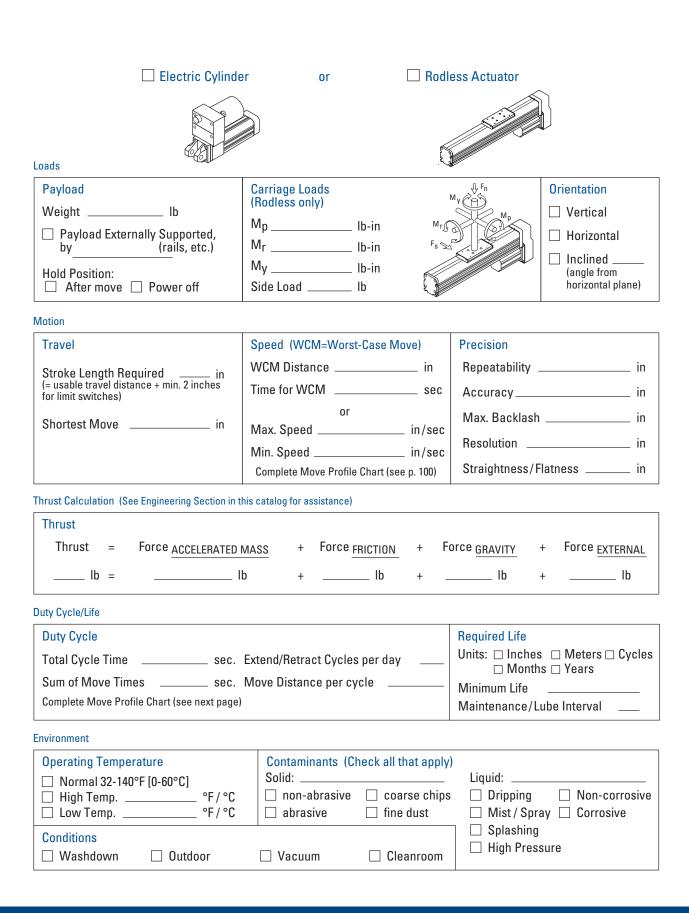

NEMA and Material Specifications

Material Der	isities			Friction Coefficients			
	oz/in³	lb/in ³	gm/cm³	(Sliding)	μ		
Aluminum	1.57	0.098	2.72	Steel on Steel	0.58		
Brass	4.96	0.31	8.6	Steel on Steel (Greased)	0.15		
Bronze	4.72	0.295	8.17	Aluminum on Steel	0.45		
Copper	5.15	0.322	8.91	Copper on Steel	0.36		
Plastic	0.64	0.04	1.11	Brass on Steel	0.40		
Steel	4.48	0.28	7.75	Plastic on Steel	0.2		
Hard Wood	0.46	0.029	0.8	Linear Bearings	0.001		
Soft Wood	0.28	0.018	0.48				
Mechanism Ef	ficiencies			Temperature			
Lead Screw (Bronze N	lut)	0.4	°F = (1.8 x °C) + 32			
Lead Screw (Plastic N	ut)	0.5	°C = 0.555 (°F - 32)			
Ball Screw			0.9	Gravity			
Helical Gear 0.7			0.7	(Acceleration Constant)			
Spur Gear 0.6			0.6	$g = 386 \text{ in/s}^2 = 32.2 \text{ ft/s}^2 = 9.8 \text{ m/s}^2$			
Timing Belt/Pulley 0.9			0.9				

NEMA Standard Motor Dimensions

Dimension (in)	NEMA 17	NEMA 23	NEMA 34	NEMA 42	
"A" Motor Shaft Diameter	0.197	0.250	0.375	0.625	
"B" Motor Shaft Length*	0.945	0.810	1.250	1.380	
"C" Pilot Diameter	0.866	1.500	2.875	2.186	
"D" Pilot Length*	0.080	0.062	0.062	0.062	
"E" Mounting Bolt Circle	1.725	2.625	3.875	4.950	
"F" Bolt Hole Size	0.127	0.195	0.218	0.218	

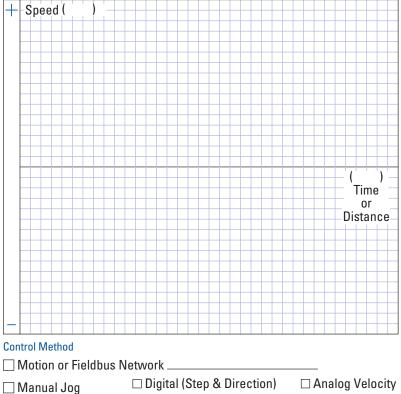
* These dimensions can be less than value indicated.



Application Worksheet

For selection assistance, fax, to your local Kollmorgen Distributor or directly to Kollmorgen

Prepared By		Prepared For Name				
Name						
Company		Company				
Phone		Phone				
Fax		Fax				
Email		E-mail				
Address		Address				
User's primary business						
Type of machine Kollmorgen	product to be used on .					
Current Kollmorgen user?	Yes 🗌 No 🗌					
Project Time Frame	Vo	lume Requirements				
Proposal/	Ne>	t 12 months:				
Build prototype/	Yea	r 2:				
In production/	Yea	r 3:				
Action Required						
Demo	Price quotation					
□ Recommend product □ Call me to d						
Please include drawi	nas comments or					
additional information						


KOLLMORGEN

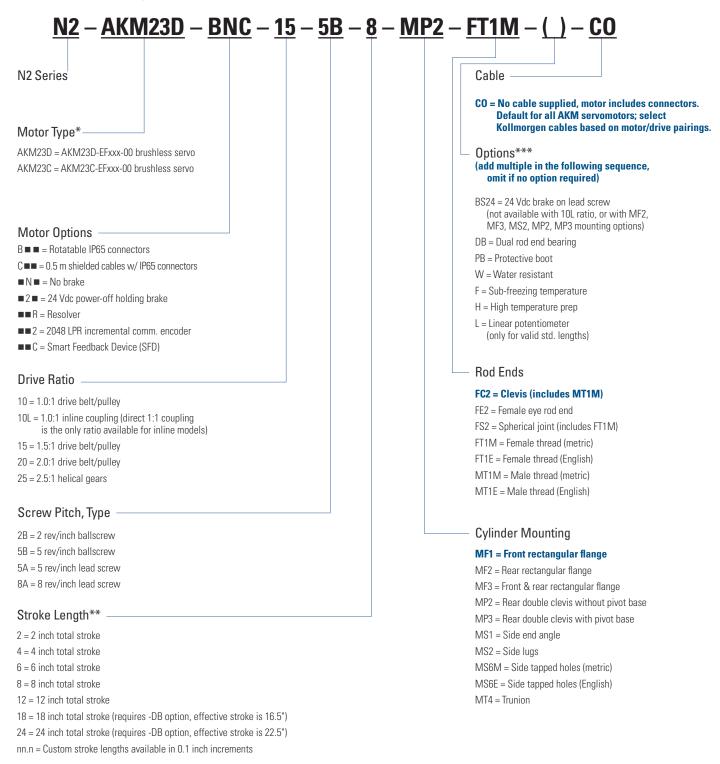
Application Worksheet

Move Profile

Graph your most demanding cycle, include accel/decel, velocity and dwell times. You may also want to indicate load variations and I/O changes during the cycle. Label axes with proper scale and units.

☐ Limit Switches

Digital (Step & Directio
 Analog Torque
 Programmable (Basic)

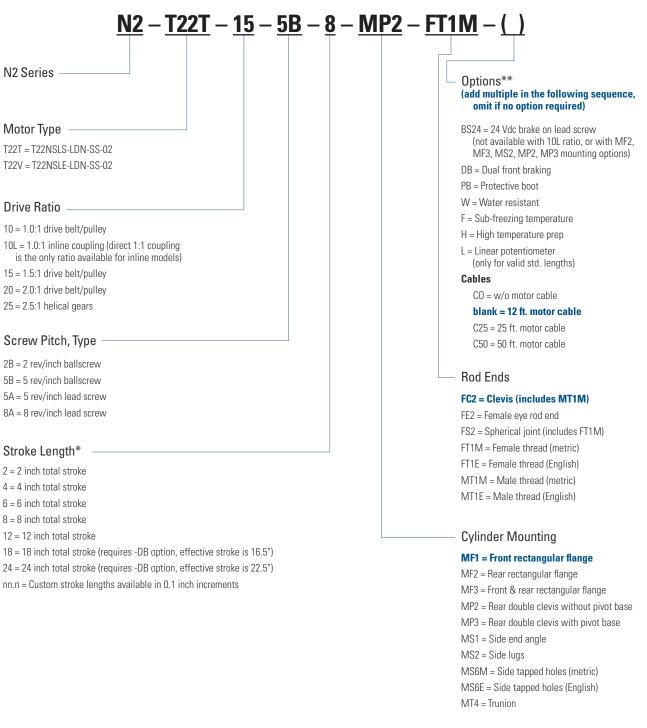

Analog Velocity
 Analog Position
 IEC61131 Control

Description of Application	
The second se	

Motor Type Preferred

□ Servo □ Other	Stepper 🗌
Axes of Motion	
	Fieldbus PLC Computer Analog I/O RS232 Digital I/O Control Other
Operator Keypad/L(Pushbutto HMI Size (
Supply Voltage 110 Vac 400 Vac 0 Other	🗌 220 Vac
Other	Linear Potentiometer
	equired
Input Functio	ns
Output Functi	ions

N2 Series Electric Cylinder with AKM Servomotors



^{*} Contact customer support for AKM combinations outside of those listed.

^{**} For custom lengths round up to next standard incremental plus add standard cut fee.

^{***} Contact customer support for non-standard pricing and lead times. Note: Options shown in bold blue text are considered standard.

N2 Series Electric Cylinder with Stepper Motors

* For custom lengths round up to next standard incremental plus add standard cut fee. ** Contact customer support for non-standard pricing and lead times. Note: Options shown in bold blue text are considered standard.

 \leq 0 Ē Z 0 \leq ш NCLATU в

- 10 = 1.0:1 drive belt/pulley
- 10L = 1.0:1 inline coupling (direct 1:1 coupling

Screw Pitch, Type

- 2B = 2 rev/inch ballscrew
- 5B = 5 rev/inch ballscrew

Stroke Length*

- 2 = 2 inch total stroke
- 4 = 4 inch total stroke

EC Series Electric Cylinder with AKM Servomotors

EC Series

- EC1
- EC2 EC3

EC4

- EC5

Motor Type

AKM11B = AKM11B-ANCNx-00 brushless servo AKM13C = AKM13C-ANCNx-00 brushless servo AKM23D = AKM23D-EFxxx-00 brushless servo AKM23C = AKM23C-EFxxx-00 brushless servo AKM42G = AKM42G-EKxxx-00 brushless servo AKM42E = AKM42E-EKxxx-00 brushless servo AKM52G = AKM52G-EKxxx-00 brushless servo AKM52H = AKM52H-EKxxx-00 brushless servo AKM52L = AKM52L-EKxxx-00 brushless servo X = Customer-supplied motor

(motor described in Options element of part number)

Motor Options	Available
B ■ ■ = Rotatable IP65 connectors	AKM2
C = = 0.5 m shielded cables w/ IP65 connectors	AKM1, AKM2
C ■ ■ = Rotatable IP65 connectors	AKM4, AKM5
■ N ■ = No brake	AKM1, AKM2, AKM4, AKM5
2 = 24 Vdc power-off holding brake	AKM2, AKM4, AKM5
R = Resolver	AKM1, AKM2, AKM4, AKM5
2 = 2048 LPR incremental comm. encoder	AKM1, AKM2, AKM4, AKM5
<pre>C = Smart Feedback Device (SFD)</pre>	AKM1, AKM2, AKM4, AKM5

Drive Ratio

10 = 1.0:1 drive belt/pulley (EC1 – helical)	Ali
10L = 1.0:1 inline coupling (direct 1:1 coupling	Ali
is the only ratio available for inline models) 15 = 1.5:1 drive belt/pulley 20 = 2.0:1 drive belt/pulley (EC1 – helical) 40 = 4.0:1 helical gears 50 = 5.0:1 helical gears 70 = 7.1:1 helical gears 100 = 10.0:1 helical gears	EC2 Not EC1 EC2 EC3 EC3
Screw Lead	Av
03M = 3 mm/rev ballscrew	EC1
05B = 5 mm/rev ballscrew	EC2
10B = 10 mm/rev ballscrew	EC3

UDD = D IIIII/16V Dallscrew	
10B = 10 mm/rev ballscrew	
16B = 16 mm/rev ballscrew	
25B = 25 mm/rev ballscrew	
32B = 32 mm/rev ballscrew	
04A = 4 mm/rev lead screw	

Available

EC1

EC1

EC2, EC3

EC2, EC3

EC4, EC5

EC4, EC5

EC4, EC5

All

EC3, EC4, EC5

EC3, EC4, EC5

Available

411 EC2, EC3, EC4, EC5 Not valid for EC3-AKM42 C1 only EC2, EC3, EC4, EC5 EC3 only C2, EC4, EC5

Available

EC1	
EC2, EC3	
EC3, EC4, EC5	
EC2, EC3	
EC4	
EC5	
EC2, EC3	

Stroke Length

50 = 50 mm total stroke 100 = 100 mm total stroke 150 = 150 mm total stroke 200 = 200 mm total stroke 250 = 250 mm total stroke 300 = 300 mm total stroke 450 = 450 mm total stroke 600 = 600 mm total stroke 750 = 700 mm total stroke 1000 = 1,000 mm total stroke 1250 = 1,250 mm total stroke 1500 = 1,500 mm total stroke nnn = Custom stroke lengths available in 10 mm increments

Cylinder Mounting

MF1 = Front rectangular flange MF1E = Front rectangular flange (English) MF1M = Front rectangular flange (metric) MF2 = Rear rectangular flange MF2E = Rear rectangular flange (English) MF2M = Rear rectangular flange (metric) MF3 = Front & rear rectangular flange MF3E = Front & rear rectangular flange MF3M = Front & rear rectangular flange MP2 = Rear double clevis without pivot base MP3 = Rear double clevis with pivot base MS1 = Side end angle MS2 = Side lugs

MS6M = Side tapped holes (metric)

MS6E = Side tapped holes (English) MT4 = Trunnion

Rod Ends

FC2 = Clevis (includes MT1M) FS2 = Spherical joint (includes FT1M) FT1M = Female thread (metric) FT1E = Female thread (English) MT1M = Male thread (metric) MT1E = Male thread (English)

Options

(add multiple in the following sequence, omit if no options)

BA24 = 24 Vdc brake on actuator (EC1 only, not available with 10L ratio or MS1 mounting options)

BS24 = 24 Vdc brake on ballscrew (not available with EC1 or 10L ratio. or with MF2(x), MF3(x), MS1, MP2(x), MP3(x) mounting options) BS115 = 115 Vac brake on ballscrew (not available with EC1 or 10L ratio,

or with MF2(x), MF3(x), MS1, MP2(x), MP3(x) mounting options) PB = Protective boot*

L = Linear potentiometer (only valid through 600 mm stroke, standard lengths)* 17X = NEMA 17 mountless motor (EC1 only)

Cable

CO = No cable supplies, motor includes connectors. Default for all AKM Servomotors; select cable as an accessory. *Contact customer service for EC1

Note: Options shown in bold blue text are considered standard.

Available

EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5 EC3, EC4, EC5 EC4, EC5 EC4, EC5

EC4, EC5

Available

EC2, EC3, EC5 EC4 only EC4 only EC2, EC3, EC5

EC4 only

EC4 only

EC4 only

EC4 only

EC2, EC3

EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5

Available

ÂĬ

All

All

All

ΔII

All

ΔII

All

EC1, EC2, EC3, EC5

All

All

All

All

 \leq

EC Series Electric Cylinder with Stepper Motors

EC Series

FC1

EC2

EC3

EC4

EC5

 \leq 0

Ē

Z 0

 \leq ш

Z

CLATU

в

ш

Motor Type

CTP12 = CTP12xLF10MMA00 stepper motor T22T = T22NSLS-LDN-SS-02 stepper motor T22V = T22NSLE-LDN-SS-02 stepper motor T31x = N31HSFH-LSS-SS-02 stepper motor T32x = N32HSFS-LEK-SS-02 stepper motor T41T = N41HSFS-LSS-SS-03 stepper motor Where: x = V for 160 Vdc, or T for 320 Vdc

Drive Ratio

10 = 1.0:1 drive belt/pulley (EC1 – helical) 10L = 1.0:1 inline coupling (direct 1:1 coupling is the only ratio available for inline models)	All All
15 = 1.5:1 drive belt/pulley	EC2
20 = 2.0:1 drive belt/pulley (EC1 – helical)	Not
40 = 4.0:1 helical gears	EC1
50 = 5.0:1 helical gears	EC2
70 = 7.1:1 helical gears	EC3
100 = 10.0:1 helical gears	EC2

Note: Options shown in bold blue text are considered standard

Screw Lead

03M = 3 mm/rev ballscrew 05B = 5 mm/rev ballscrew 10B = 10 mm/rev ballscrew 16B = 16 mm/rev ballscrew 25B = 25 mm/rev ballscrew 32B = 32 mm/rev ballscrew 04A = 4 mm/rev lead screw

Available

EC1 EC2, EC3 EC2, EC3 EC2, EC3, EC4, EC5 EC4, EC5 EC4, EC5

Available

All EC2, EC3, EC4, EC5 Not valid for EC3-AKM42 EC1 only EC2, EC3, EC4, EC5 EC3 only EC2, EC4, EC5

Available		
EC1		
EC2, EC3		
EC3, EC4, EC5		
EC2, EC3		
EC4		
EC5		
EC2, EC3		

Stroke Length

50 = 50 mm total stroke 100 = 100 mm total stroke 150 = 150 mm total stroke 200 = 200 mm total stroke 250 = 250 mm total stroke 300 = 300 mm total stroke 450 = 450 mm total stroke 600 = 600 mm total stroke 750 = 700 mm total stroke 1000 = 1,000 mm total stroke 1250 = 1,250 mm total stroke 1500 = 1,500 mm total stroke nnn = Custom stroke lengths available in 10 mm increments

Cylinder Mounting

MF1 = Front rectangular flange MF1E = Front rectangular flange (English) MF1M = Front rectangular flange (metric) MF2 = Rear rectangular flange MF2E = Rear rectangular flange (English) MF2M = Rear rectangular flange (metric) MF3 = Front & rear rectangular flange MF3E = Front & rear rectangular flange MF3M = Front & rear rectangular flange MP2 = Rear double clevis without pivot base MP3 = Rear double clevis with pivot base MS1 = Side end angle MS2 = Side lugs MS6M = Side tapped holes (metric)

MS6E = Side tapped holes (English) MT4 = Trunnion

Rod Ends

FC2 = Clevis (includes MT1M) FS2 = Spherical joint (includes FT1M) FT1M = Female thread (metric) FT1E = Female thread (English) MT1M = Male thread (metric) MT1E = Male thread (English)

Options

(add multiple in the following sequence, omit if no options)

BA24 = 24 Vdc brake on actuator (EC1 only, not available with 10L ratio or MS1 mounting options)

BS24 = 24 Vdc brake on ballscrew (not available with EC1 or 10L ratio, or with MF2(x), MF3(x), MS1, MP2(x), MP3(x) mounting options)

BS115 = 115 Vac brake on ballscrew (not available with EC1 or 10L ratio, or with MF2(x), MF3(x), MS1, MP2(x), MP3(x) mounting options) PB = Protective boot*

L = Linear potentiometer (only valid through 600 mm stroke, standard lengths)*

Available

Cable

C0 = without motor cable blank = 12 ft. motor cable C25 = 25 ft. motor cable C50 = 50 ft. motor cable

All (standard for CTP12) EC2, EC3, EC4, EC5 (standard for T series) EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5

Available

EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5

EC3, EC4, EC5 EC4, EC5 EC4, EC5

Available

EC4 only EC4 only EC2, EC3, EC5

EC4 only

EC4 only

EC4 only

EC2, EC3

EC3, EC4, EC5

EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5

Available

All

All

All

All

EC2,

All

All

All

All

EC4 only EC2, EC3, EC5

EC1, EC2, EC3, EC5

All

ΔII

All

All

*Contact customer service for EC1

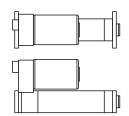
Electric Cylinder Option Details

1-5 Base Model Number

Choose the model with sufficient speed and thrust with a comfortable safety margin. Refer to the Speed vs. Thrust curves.

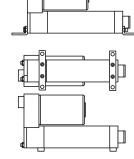
EC cylinders with gear or timing belt drive reductions have the motor mounted parallel to the screw. Inline models have the motor coupled directly to the screw with no reduction.

6. Stroke Length

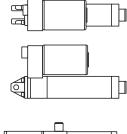

Standard lengths are listed, and custom lengths are also available. To maximize cylinder life, the thrust tube should not impact the physical end-of-travel on either end. Extra travel length is necessary to decelerate the load to a stop when an end-of-travel limit switch is encountered. This extra travel distance depends on load and speed.

7. Cylinder Mounting

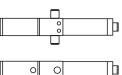
Specify any one of these cylinder mounting options. Dimensional drawings are on pages 40-45.


Cylinder base mount options -MS1,-MP2, -MP3, -MF2, -MF3 cannot be ordered with inline models.

MF1 Front Flange MF2 Rear Flange MF3 Both Flanges

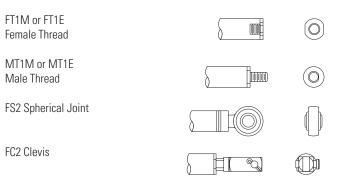


MS1 Side End Angles



MP3 Rear Clevis (MP2 omits pivot base)

MT4 Trunnion



Pivot Mount Caution:

When utilizing a pivot mounting option (MP2, MP3 or MT4) in conjunction with a pivot rod end (FS2 or FC2), it is recommended that the electric cylinder be extended only to 90–95% of its full stroke. This increases the system's rigidity and extends the life of the guide bearings and rod seal.

8. Rod Ends

Four rod end types are available:

9. Other Options

See Options and Accessories Section for complete specifications.

* Limit sensors are sold as accessories

EC1 Series Position Sensors

Hall Effect Sensors (NPN)		
Part Number	Description	
EC1-18N	Hall effect switch (NPN, normally open), without cable	
EC1-18N-NC	Hall effect switch (NPN, normally closed), without cable	
EC1-18N-03	Hall effect switch (NPN, normally open), 3 m leads	
EC1-18N-NC-03	Hall effect switch (NPN, normally closed), 3 m leads	
EC1-18N-QD	Hall effect switch (NPN, normally open), 150 mm quick disconnect cable	
EC1-18N-NC-QD	Hall effect switch (NPN, normally closed), 150 mm quick disconnect cable	

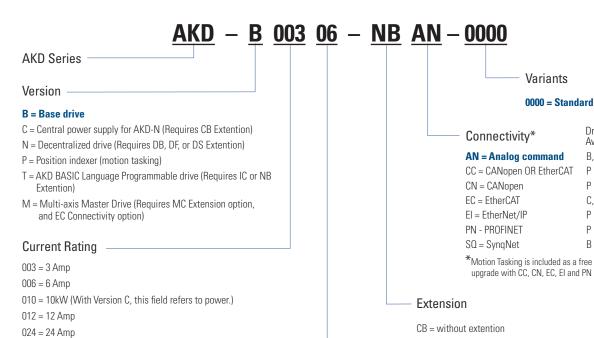
Hall Effect Sensor (PNP)		
Part Number	Description	
EC1-18P	Hall effect switch (PNP, normally open), without cable	
EC1-18P-NC	Hall effect switch (PNP, normally closed), without cable	
EC1-18P-03	Hall effect switch (PNP, normally open), 3 m leads	
EC 1-18P-NC-03	Hall effect switch (PNP, normally closed), 3 m leads	
EC1-18P-QD	Hall effect switch (PNP, normally open), 150 mm quick disconnect cable	
EC1-18P-NC-QD	Hall effect switch (PNP, normally closed), 150 mm quick disconnect cable	

Spare Cables	
Part Number	Description
QPS-4M	Spare quick disconnect cable, 4 m
QPS-9M	Spare quick disconnect cable, 9 m

N2/EC2-EC5 Series Position Sensors

Magnetic Reed Switches	
Part Number	Description
PSR-1	Magnetic reed switch (normally open), 3 m leads
PSR-2	Magnetic reed switch (normally closed), 3 m leads
PSR-1Q	Magnetic reed switch (normally open), 4 m quick disconnect
PSR-2Q	Magnetic reed switch (normally closed), 4 m quick disconnect
PSR-1Q-NC	Magnetic reed switch (normally open), without cable
PSR-2Q-NC	Magnetic reed switch (normally closed), without cable
PSR-1Q-C9M	Magnetic reed switch (normally open), 9 m quick disconnect
PSR-2Q-C9M	Magnetic reed switch (normally closed), 9 m quick disconnect

Hall Effect Sensors (NPN)	
Part Number	Description
PSN-1	Hall effect switch (NPN, normally open), 3 m leads
PSN-2	Hall effect switch (NPN, normally closed), 3 m leads
PSN-1Q	Hall effect switch (NPN, normally open), 4 m quick disconnect
PSN-2Q	Hall effect switch (NPN, normally closed), 4 m quick disconnect
PSN-1Q-NC	Hall effect switch (NPN, normally open), without cable
PSN-20-NC	Hall effect switch (NPN, normally closed), without cable
PSN-1Q-C9M	Hall effect switch (NPN, normally open), 9 m quick disconnect
PSN-2Q-C9M	Hall effect switch (NPN, normally closed), 9 m quick disconnect


Hall Effect Sensor (PNP)	
Part Number	Description
PSP-1	Hall effect switch (PNP, normally open), 3 m leads
PSP-2	Hall effect switch (PNP, normally closed), 3 m leads
PSP-1Q	Hall effect switch (PNP, normally open), 4 m quick disconnect
PSP-2Q	Hall effect switch (PNP, normally closed), 4 m quick disconnect
PSP-1Q-NC	Hall effect switch (PNP, normally open), without cable
PSP-2Q-NC	Hall effect switch (PNP, normally closed), without cable
PSP-1Q-C9M	Hall effect switch (PNP, normally open), 9 m quick disconnect
PSP-2Q-C9M	Hall effect switch (PNP, normally closed), 9 m quick disconnect

Spare Cables	
Part Number	Description
QPS-4M	Spare quick disconnect cable, 4 m
QPS-9M	Spare quick disconnect cable, 9 m

Other	
Part Number	Description
PCA-5204	E-Manual (CD-ROM), Files available Online for free download

AKD Servo Drive

Voltage -

- DB = hybrid motor cable
 - DF = additional EtherCAT port + feedback connector
 - DS = local STO + feedback connector
 - IC = Expanded I/O version and SD card slot ("T" version drive only)

Drive Version

Availability

C, M, N, P

B, P, T

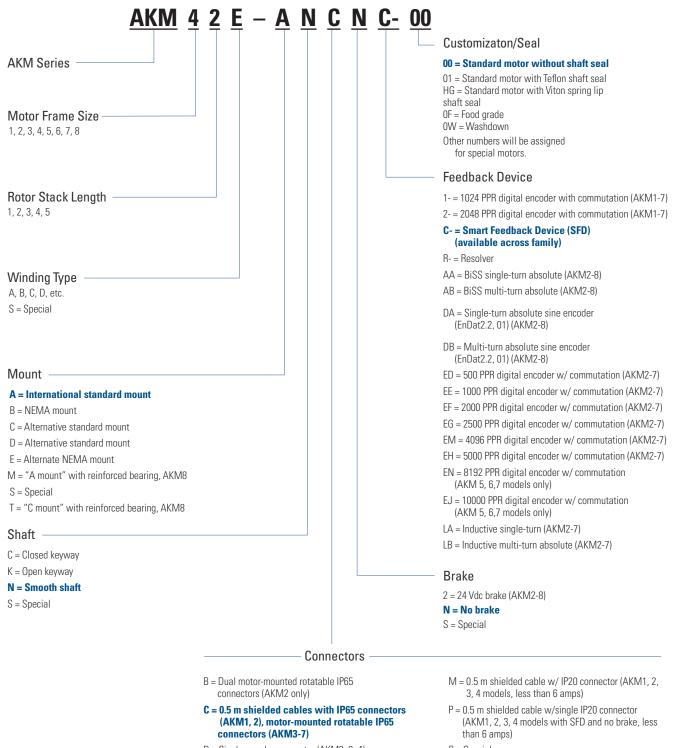
Р

Р

Р

Ρ В

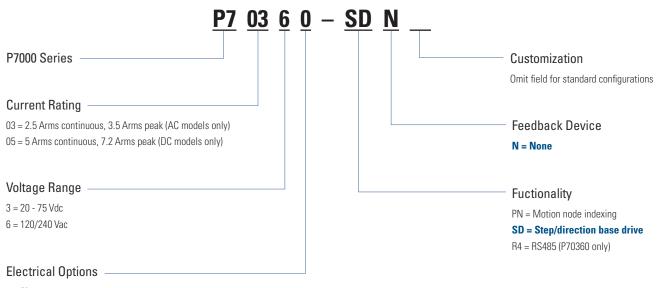
NB = Without extensions


 \leq 0 Ē Z 0 \leq ENCLATUR

m

06 = 120/240 Vac 1Ø/3Ø (24 Amp Drive: 240 Vac 3Ø only)

07 = 240/480 Vac 3Ø (Version C: 07 = 400/480 Vac 3Ø | Version N: 07 = 560/680 Vdc)


AKM Brushless Servomotor

- D = Single angular connector (AKM2, 3, 4)
- G = Straight motor-mounted IP65 connectors (AKM2-7)
- H = Motor-mounted IP65 power connector size 1.5 (AKM74Q & AKM82 only)
- S = Special
- T = Terminal box for power and feedback connector size 1.0 (AKM8 only)

m

P7000 Stepper Drive

0 = None

MOTIONEERING® Application Engine

To help select and size Kollmorgen components, this Windows[®]-based motor-sizing program takes a systems approach to the selection of brushless DC servomotors, stepper motors and drives. MOTIONEERING application engine, available at www.kollmorgen.com, uses a project concept for the collection and saving of rotary and linear multi-axis load information. This provides the user the flexibility to sum the effects of multiple axes of motion for power supply and shunt regeneration sizing.

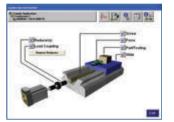
A wide variety of linear and rotary mechanisms are provided including lead screw, rack and pinion, conveyor, nip rolls, cylinder, rotary, and direct data-entry using unique sizing algorithms and product databases criteria.

The searchable database consists of hundreds of systems on product combinations including rotary housed and frameless brushless servomotors, direct drive rotary and linear brushless servomotors, linear actuators (electric cylinders, rodless actuators, and precision tables) and stepper systems.

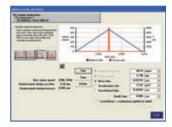
The MOTIONEERING application engine also provides versatile units-of-measure selection options for mechanism and motion profile data-entry, with the ability to convert data into other available units. Online Help explains program functions and the definition of terms and equations used in the program.

Features

- Group multiple mechanisms within a "project" organize and combine data for power supply and regeneration sizing
- Types of mechanisms for analysis include lead screw, rack and pinion, conveyor, nip rolls, rotary and direct drive linear motor
- Motion profile options include simple triangle, 1/3-1/3-1/3 trapezoidal, variable traverse trapezoidal, and more
- Search results display shows color highlighted solution set of options for easy evaluation of system specifications and selection


Supported Operating Systems


• Microsoft® Windows 2000, XP, Vista, Windows 7


MOTIONEERING 6.4.0 includes

- NEW AKMH series Stainless Steel Motors and AKD systems at 120, 240, 400 and 480 V
 - Designed to meet IP69K, EHEDG, 3A, and built with FDA approved food grade materials
 - 19 frame/stack length combinations
 - Continuous torque to 22 Nm
 - Peak torque to 92 Nm
- Corrected length dimensions of some AKM servomotor & gearmotor models
- Corrected CH132 thermal resistance
- Added HIPERFACE DSL sine encoder to search field

Note: Performance curves included for all servomotor systems

About Kollmorgen

Kollmorgen is a leading provider of motion systems and components for machine builders. Through world-class knowledge in motion, industry-leading quality and deep expertise in linking and integrating standard and custom products, Kollmorgen delivers breakthrough solutions that are unmatched in performance, reliability and ease-of-use, giving machine builders an irrefutable marketplace advantage.

For assistance with your application needs in North America, contact us at: 540-633-3545, support@kollmorgen.com or visit www.kollmorgen.com for a global contact list.

Fond du Lac

Santa Barbara O

Tijuana 🔵

Boston
 Radford

KOLLMORGEN

Because Motion Matters[™]

Kollmorgen 203A West Rock Road Radford, VA 24141 USA Phone: 1-540-633-3545 Fax: 1-540-639-4162 Kollmorgen Europe GmbH Pempelfurtstraße 1 40880 Ratingen Germany Phone: +49 (0) 2102 9394 0 Fax: +49 (0) 2102 9394 3155

São Paulo 🔎

Kollmorgen Asia China Rm 2205, Scitech Tower 22 Jianguomen Wai Street Phone: +86 400 666 1802 Fax: +86 10 6515 0263

Stockhol

🔘 lsta

Säro 🔾

Kollmorgen Aerospace and Defense 501 West Main Street Radford, VA 24141 USA Phone: 1-540-731-5668 Fax: 1-540-731-5679

Tianjin

Tokyo

Nagoya

© 2014 Kollmorgen Corporation. All rights reserved. KM_SG_00219_RevA_EN

Specifications are subject to change without notice. It is the responsibility of the product user to dete mine the suitability of this product for a specific application. All trademarks are the property of their respective owners.